期刊文献+

视频烟雾检测研究进展 被引量:34

Video smoke detection: a literature survey
原文传递
导出
摘要 目的视频烟雾检测具有响应速度快、不易受环境因素影响、适用面广、成本低等优势,为及早预警火灾提供有力保障。近年涌现大量视频检测方法,尽管检测率有所提升,但仍受到高误报率和高漏报率的困扰。为了全面反映视频烟雾检测的研究现状和最新进展,本文重点针对2014年至2017年国内外公开发表的主要文献,进行全面的梳理和分析。方法该工作建立在广泛文献调研的基础上,立足于视频烟雾检测的基本框架,围绕视频图像预处理、疑似烟区提取、烟雾特征描述、烟雾分类识别等处理阶段,系统地对最新文献进行分析和总结。此外,对区别于传统框架的深度学习检测方法亦进行了相关归纳。结果重点依据烟雾运动特征和烟雾静态特征这两类,对疑似烟区提取方法进行梳理;从统计量特征、变换域特征和局部模式特征3个方面对烟雾特征描述方法进行梳理,并从颜色、形状等七个角度进行总结;从基于规则和基于学习这两个视角,梳理烟雾识别和决策方法;最后,对于基于深度学习的方法单独进行了阐述。文献通过系统地梳理,凝练出视频烟雾检测近几年取得的进展和尚存在的不足,并对视频烟雾检测发展前景进行展望。结论针对视频烟雾检测的研究一直备受青睐,越来越多性能优秀的检测算法不断涌现。通过对现有研究进行全面梳理和系统分析,期望视频烟雾检测能取得更大的进展并更好地应用于工业领域,为火灾预警提供更有力的保障。 Objective Video smoke detection methods can guarantee real-time fire alarms because these methods respond quickly to fire and have strong robustness to the environment, suitability for various scenes, and low-cost application. Many state-of-the-art video smoke detection methods have been proposed recently. The detection rates of these methods have been greatly improved by recent efforts, but these methods still suffer from the problem of high false and missing alarms. We pro- vide an up-to-date critical survey of research on video smoke detection methods to keep up with the latest research progress,research focus, and development trends in video smoke detection. We focused on domestic and international research on video smoke detection published from 2014 to 2017. These publications include feature extraction, smoke recognition, and detection based on images and videos. Method We review papers on video smoke detection and summarize a general re- search framework for video smoke detection. The general framework of video smoke detection indicates that the general pro- cedure of these methods is divided into several processing steps, namely, video preprocessing, detection of candidate smoke regions, feature extraction of smoke regions, video smoke classification, and other processing techniques. We discuss these methods in detail according to the general processing steps. Aside from describing traditional smoke detection methods based on handcrafted features, we also discuss and analyze deep learning-based smoke detection methods that were recently proposed given that deep learning is a hot area in machine learning research. Result On the basis of the general processing steps, we analyze these video preprocessing methods and divide the relevant literature into three major categories. These video preprocessing methods include preprocessing methods for color, preprocessing techniques for noise interference, and preprocessing approaches to image segmentation. Candidate smoke regions are detected in two ways. One way is
出处 《中国图象图形学报》 CSCD 北大核心 2018年第3期303-322,共20页 Journal of Image and Graphics
基金 国家自然科学基金项目(61363038) 江西省高校科技落地计划(KJLD12066) 江西省青年科学家培养对象(20142BCB23014) 江西省教育厅科技项目(GJJ150459 GJJ150406) 江西省科技支撑计划项目(2015ZBBE50013)~~
关键词 视频烟雾检测 烟雾识别 特征提取 运动特征 静态特征 局部特征 video smoke detection smoke recognition feature extraction motion feature static feature local feature
  • 相关文献

参考文献24

二级参考文献256

共引文献162

同被引文献252

引证文献34

二级引证文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部