期刊文献+

基于卷积神经网络的手势识别初探 被引量:52

Preliminary Study on Hand Gesture Recognition Based on Convolutional Neural Network
下载PDF
导出
摘要 提出一种用于手势识别的新算法,使用卷积神经网络来进行手势的识别.该算法避免了手势复杂的前期预处理,可以直接输入原始的手势图像.卷积神经网络具有局部感知区域、层次结构化、特征抽取和分类过程等特点,在图像识别领域获得广泛的应用.试验结果表明,该方法能识别多种手势,精度较高且复杂度较小,具有很好的鲁棒性,也克服传统算法的诸多固有缺点. The paper proposed a new algorithm used for hand gesture recognition which based on the convolutional neural network. The method not only avoids the hand gesture in the early period of the complex pretreatment, but also can directly input the gesture of original image. The convolutional neural network is characterized by local receptive field, hierarchical structure, global learning for feature extraction and classical. It has been applied to many image recognition tasks. Experimental results showed that the multi-class hand gestures can be recognized with high accuracy, small complexity and good robustness, while the inherent shortcomings of the traditional algorithm are overcame.
出处 《计算机系统应用》 2015年第4期113-117,共5页 Computer Systems & Applications
关键词 手势识别 卷积神经网络 局部感知 特征抽取 鲁棒性 hand gesture recognition convolutional neural network local receptive feature extraction good robustness
  • 相关文献

参考文献11

  • 1张凯.基于立体视觉的自然手势识别[学位论文].北京:北京大学,2005. 被引量:1
  • 2殷涛..基于几何矩的手势识别算法[D].上海海事大学,2004:
  • 3LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. USA: IEEE, 1998: 2278-2324. 被引量:1
  • 4Lauer F, Suen CY, Bloch G. A trainable feature extractor for handwritten digit recognition. Pattern Recognition, 2007, 40(6):1816-1824. 被引量:1
  • 5Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: A convolutional neural network approach. IEEE Trans. on Neural Networks, 1997, 8(1): 98-113. 被引量:1
  • 6Tivive FHC, Bouzerdoum A. An eye feature detector based on convolutional neural network. Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. IEEE, 2005: 90-93. 被引量:1
  • 7Mate S, Akira Y, Munetaka Y, Jun O. Pedestrian detection with convolutional neural networks. IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229. 被引量:1
  • 8Cun YL, Muller U, Ben J, Cosatto E, Flepp B. Off-road obstacle avoidance through end-to-end learning. Advances in Neural Information Processing Systems. USA: MIT Press, 2005. 被引量:1
  • 9赵志宏,杨绍普,马增强.基于卷积神经网络LeNet-5的车牌字符识别研究[J].系统仿真学报,2010,22(3):638-641. 被引量:151
  • 10徐姗姗,刘应安,徐昇.基于卷积神经网络的木材缺陷识别[J].山东大学学报(工学版),2013,43(2):23-28. 被引量:45

二级参考文献28

共引文献191

同被引文献334

引证文献52

二级引证文献483

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部