期刊文献+

基于卷积神经网络分类的说话人识别算法 被引量:6

Speaker Recognition Algorithm Based on Convolutional Neural Networks
下载PDF
导出
摘要 由于经典的说话人识别算法都是将特征提取和模式分类分开进行的,这导致特征的选取对分类影响很大,更增加了算法的复杂度。利用卷积神经网络(CNN)的结构优势,文章提出一种基于卷积神经网络分类的说话人识别算法。算法首先对原始语音信号计算语谱图,对获得的语谱图采用卷积神经网络进行分类,分类的结果即为类别。通过真实语音库和TIMIT库测试表明,本算法取得了较高的识别率,说明这是一种有效的说话人识别方法。 Feature extraction and pattern classification are two separated part in classical algorithms for speaker recognition, wherein the choice of features has much infl uence on classifi cation, and thus algorithm complexity is generally increased. In this manuscript we propose to use the structure advantage of convolutional neural network(CNN) to form a new speaker recognition algorithm. The algorithm firstly computes the spectrograms of a speech signal, then using CNN for classification. Experimental results based on self-built database and the TIMIT database show that the presented algorithm is effective in speaker recognition.
作者 胡青 刘本永
出处 《信息网络安全》 2016年第4期55-60,共6页 Netinfo Security
基金 国家自然科学基金[60862003] 科技部国际合作项目[2009DFR10530] 贵州大学研究生创新基金[2015081]
关键词 卷积神经网络 说话人识别 语谱图 convolutional neural network speaker recognition spectrogram
  • 相关文献

参考文献23

  • 1王韵琪,俞一彪.自适应高斯混合模型及说话人识别应用[J].通信技术,2014,47(7):738-743. 被引量:8
  • 2鲁晓倩..基于VP树和GMM的说话人识别研究[D].中国科学技术大学,2014:
  • 3ATALB S. Automatic Recognition of Speaker from Their Voices[J].IEEE Transaction on Acoustics, Speech, and Signal Processing, 1976,64(4): 460-475. 被引量:1
  • 4DAVISS B, MERMELSTEIN P. Comparison of ParametricRepresentations for Monosyllabic Word Recognition in ContinuouslySpoken Sentences [J]. IEEE Transactions on Acoustics, Speech and SignalProcessing, 1980: 28(4): 357-366. 被引量:1
  • 5LAWRENCER. Fundamentals of Speech Recognition[M].India:Pearson Education India, 2008. 被引量:1
  • 6DAVENPORTM R, GARUDADRI H. A Neural Net AcousticPhonetic Feature Extractor Based on Wavelets[C]// IEEE. Pacific RimConference on Communications, Computers and Signal Processing, May9-10, 1991, Victoria, B. C., CANADA. NJ: IEEE, 1991: 449-452. 被引量:1
  • 7刘鸣,戴蓓倩,李辉,李霄寒,陆伟.基于离散小波变换和感知频域滤波的语音特征参数[J].电路与系统学报,2000,5(1):21-25. 被引量:16
  • 8NADASA, NAHAMOO D, PICHENY M A. Speech RecognitionUsing Noise-adaptive Prototypes[J].IEEE Transactions on Acoustics,Speech and Signal Processing, 1989, 37(10): 1495-1503. 被引量:1
  • 9COLOMBIJ M, RUCK D W, ANDERSON T R, et al. CohortSelection and Word Grammar Effects for Speaker Recognition[C]//IEEE.International Conference on Acoustics, Speech and Signal Processing, May7-10,1996, Atlanta, Georgia. NJ: IEEE, 1996: 85-88. 被引量:1
  • 10REYNOLDSD A, CARLSON B A. Text-dependent SpeakerVerification Using Decoupled and Integrated Speaker and SpeechRecognizers[C]//IEEE. 4th European Conference on SpeechCommunication and Technology. September 18-21, 1995, Madrid, Spain.NJ: IEEE, 1995: 2201-2204. 被引量:1

二级参考文献27

  • 1宋英兰.老年患者行口腔修复治疗37例的临床效果分析[J].世界最新医学信息文摘,2019,0(83):40-41. 被引量:4
  • 2CUMANI S, LAFACE P. Analysis of Large-Scale SVM Training Algorithms for Language and Speaker Recognition [J ]. IEE.F. Trans. on AUDIO, SPEECH, AND LAN- GUAGE PRGESSING,2012,20(05) :1585-1596. 被引量:1
  • 3SELVA N S, SELVA K R. : and Text-independent Speaker Identification System Using GMM [ J ]. WSEAS Trans. On Signal Processing,2013,9(04):185-194. 被引量:1
  • 4REYNOLDS D A, ROSER C. Robust Text-independent Speaker Identification Using Gaussian Mixture Speaker Models [ J ]. IEEE Transactions on Speech and Audio Processing, 1995, 3(01) :72-83. 被引量:1
  • 5张凯.基于立体视觉的自然手势识别[学位论文].北京:北京大学,2005. 被引量:1
  • 6LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. USA: IEEE, 1998: 2278-2324. 被引量:1
  • 7Lauer F, Suen CY, Bloch G. A trainable feature extractor for handwritten digit recognition. Pattern Recognition, 2007, 40(6):1816-1824. 被引量:1
  • 8Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: A convolutional neural network approach. IEEE Trans. on Neural Networks, 1997, 8(1): 98-113. 被引量:1
  • 9Tivive FHC, Bouzerdoum A. An eye feature detector based on convolutional neural network. Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. IEEE, 2005: 90-93. 被引量:1
  • 10Mate S, Akira Y, Munetaka Y, Jun O. Pedestrian detection with convolutional neural networks. IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229. 被引量:1

共引文献73

同被引文献53

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部