Thinopyrum elongatum (2n = 2x = 14, EE), a wild relative of wheat, has been suggested as a potentially novel source of resistance to several major wheat diseases including Fusarium Head Blight (FHB). In this study...Thinopyrum elongatum (2n = 2x = 14, EE), a wild relative of wheat, has been suggested as a potentially novel source of resistance to several major wheat diseases including Fusarium Head Blight (FHB). In this study, a series of wheat (cv. Chinese Spring, CS) substitution and ditelosomic lines, including Th. elongatum additions, were assessed for Type II resistance to FHB. Results indicated that the lines containing chromosome 7E of Th. elongatum gave a high level of resistance to FHB, wherein the infection did not spread beyond the inoculated floret. Furthermore, it was determined that the novel resistance gene(s) of 7E was located on the short-ann (7ES) based on sharp difference in FHB resistance between the two 7E ditelosomic lines for each arm. On the other hand, Th. elongatum chromosomes 5E and 6E likely contain gene(s) for susceptibility to FHB because the disease spreads rapidly within the inoculated spikes of these lines. Genomic in situ hybridization (GISH) analysis revealed that the alien chromosomes in the addition and substitution lines were intact, and the lines did not contain discernible genomic aberrations. GISH and multicolor-GISH analyses were further performed on three trans- location lines that also showed high levels of resistance to FHB. Lines TA3499 and TA3695 were shown to contain one pair of wheat-Th. elongatum translocated chromosomes involving fragments of 7D plus a segment of the 7E, while line TA3493 was found to contain one pair of wheat-Th, elongatum translocated chromosomes involving the D- and A-genome chromosomes of wheat. Thus, this study has established that the short-arm of chromosome 7E of Th. elongatum harbors gene(s) highly resistant to the spreading of FHB, and chromatin of 7E introgressed into wheat chromosomes largely retained the resistance, implicating the feasibility of using these lines as novel material for breeding FHB-resistant wheat cultivars.展开更多
经过多年田间和温室接种抗病性鉴定,从(77-5433×中5)杂交组合花药培养后代中选育出一个兼抗大麦黄矮病、条锈、叶锈和秆锈4种小麦主要病害的新种质遗4212。遗4212的体细胞染色体数为42,在减数分裂中期Ⅰ,在几乎所有的花粉母细胞中...经过多年田间和温室接种抗病性鉴定,从(77-5433×中5)杂交组合花药培养后代中选育出一个兼抗大麦黄矮病、条锈、叶锈和秆锈4种小麦主要病害的新种质遗4212。遗4212的体细胞染色体数为42,在减数分裂中期Ⅰ,在几乎所有的花粉母细胞中都可以观察到21个二价体,这说明遗4212是一个在遗传上业已稳定的整倍体材料。对(遗4212×77-5433)F_1代花粉母细胞的观察表明,遗4212可能是含1对外源中间偃麦草染色体的代换系或具较大中间偃麦草染色体片段的易位系。用基因组原位杂交(genomic in situ hybridization,GISH)对遗4212的有丝分裂中期相、减数分裂后期Ⅰ相和(遗4212×77-5433)F_1代花粉母细胞减数分裂中期Ⅰ、后期Ⅰ进行了检测,确证遗4212含1对外源中间偃麦草染色体。这些结果表明,遗4212是一个小麦一中间偃麦草代换系,其抗病性来自其携带的1对中间偃麦草。展开更多
: Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium(Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (...: Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium(Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (Triticum aestivum L.) Yannong 15 with Th. intermedium, a partial amphiploid E990256, with resistance to powdery mildew, was developed. It had 56 chromosomes and could form 28 bivalents in pollen mother cells at metaphase I of meiosis. Resistance verification by race 15 at the seedling stage and by mixed strains of Erysiphales gramnis DC. f. sp. tritici Em. Marchal at the adult stage showed it was immune to powdery mildew at both stages. Gene postulation via 21 isolates of E. gramnis f. sp. tritici and 29 differential hosts showed it was nearly immune to all the isolates used, and its resistance pattern was different from all the mildew resistance genes used, which indicated it probably contained a new resistance gene to powdery mildew. Biochemical verification showed it might convey different Th. intermedium chromosomes from those of the wheat- Th. intermedium partial amphiploids Zhong 1–5. Genomic in situ hybridization analysis by using St genomic DNA as the probe showed E990256 contained a recombination genome of St and E.展开更多
基金supported by the grant of the National High Technology Research and Development Program("863"Program)of China(No.2011AA100101)
文摘Thinopyrum elongatum (2n = 2x = 14, EE), a wild relative of wheat, has been suggested as a potentially novel source of resistance to several major wheat diseases including Fusarium Head Blight (FHB). In this study, a series of wheat (cv. Chinese Spring, CS) substitution and ditelosomic lines, including Th. elongatum additions, were assessed for Type II resistance to FHB. Results indicated that the lines containing chromosome 7E of Th. elongatum gave a high level of resistance to FHB, wherein the infection did not spread beyond the inoculated floret. Furthermore, it was determined that the novel resistance gene(s) of 7E was located on the short-ann (7ES) based on sharp difference in FHB resistance between the two 7E ditelosomic lines for each arm. On the other hand, Th. elongatum chromosomes 5E and 6E likely contain gene(s) for susceptibility to FHB because the disease spreads rapidly within the inoculated spikes of these lines. Genomic in situ hybridization (GISH) analysis revealed that the alien chromosomes in the addition and substitution lines were intact, and the lines did not contain discernible genomic aberrations. GISH and multicolor-GISH analyses were further performed on three trans- location lines that also showed high levels of resistance to FHB. Lines TA3499 and TA3695 were shown to contain one pair of wheat-Th. elongatum translocated chromosomes involving fragments of 7D plus a segment of the 7E, while line TA3493 was found to contain one pair of wheat-Th, elongatum translocated chromosomes involving the D- and A-genome chromosomes of wheat. Thus, this study has established that the short-arm of chromosome 7E of Th. elongatum harbors gene(s) highly resistant to the spreading of FHB, and chromatin of 7E introgressed into wheat chromosomes largely retained the resistance, implicating the feasibility of using these lines as novel material for breeding FHB-resistant wheat cultivars.
文摘经过多年田间和温室接种抗病性鉴定,从(77-5433×中5)杂交组合花药培养后代中选育出一个兼抗大麦黄矮病、条锈、叶锈和秆锈4种小麦主要病害的新种质遗4212。遗4212的体细胞染色体数为42,在减数分裂中期Ⅰ,在几乎所有的花粉母细胞中都可以观察到21个二价体,这说明遗4212是一个在遗传上业已稳定的整倍体材料。对(遗4212×77-5433)F_1代花粉母细胞的观察表明,遗4212可能是含1对外源中间偃麦草染色体的代换系或具较大中间偃麦草染色体片段的易位系。用基因组原位杂交(genomic in situ hybridization,GISH)对遗4212的有丝分裂中期相、减数分裂后期Ⅰ相和(遗4212×77-5433)F_1代花粉母细胞减数分裂中期Ⅰ、后期Ⅰ进行了检测,确证遗4212含1对外源中间偃麦草染色体。这些结果表明,遗4212是一个小麦一中间偃麦草代换系,其抗病性来自其携带的1对中间偃麦草。
文摘: Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium(Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (Triticum aestivum L.) Yannong 15 with Th. intermedium, a partial amphiploid E990256, with resistance to powdery mildew, was developed. It had 56 chromosomes and could form 28 bivalents in pollen mother cells at metaphase I of meiosis. Resistance verification by race 15 at the seedling stage and by mixed strains of Erysiphales gramnis DC. f. sp. tritici Em. Marchal at the adult stage showed it was immune to powdery mildew at both stages. Gene postulation via 21 isolates of E. gramnis f. sp. tritici and 29 differential hosts showed it was nearly immune to all the isolates used, and its resistance pattern was different from all the mildew resistance genes used, which indicated it probably contained a new resistance gene to powdery mildew. Biochemical verification showed it might convey different Th. intermedium chromosomes from those of the wheat- Th. intermedium partial amphiploids Zhong 1–5. Genomic in situ hybridization analysis by using St genomic DNA as the probe showed E990256 contained a recombination genome of St and E.