期刊文献+

广义BBM-Burgers方程扩散波的初边值问题

Initial Boundary Value Problem of Diffused Waves in Generalized BBM-Burgers Equation
下载PDF
导出
摘要 本文主要研究的是广义BBM-Burgers方程的初边值问题,利用能量估计的方法证明了广义BBM-Burgers方程的解关于扩散波的渐近稳定性。即对方程:在本文中我们将证明在波的强度及初值u0(x)适当小的情况下,广义BBM-Burgers方程的解整体存在且当时间t趋于无穷时收敛到非线性扩散波。 This paper studies the initial boundary value problem of the generalized BBM-Burgers equation, and proves the asymptotic stability of the solution of the generalized BBM-Burgers equation with respect to the diffusion wave by using the method of energy estimation. To the equation: , in this paper, we will prove that the solution of the generalized BBM-Burgers equation exists as a whole and converges to the nonlinear diffusion waveas time t approaches infinity when the wave intensityand initial value u0(x) are appropriately small.
作者 刘媛媛
出处 《理论数学》 2024年第4期240-249,共10页 Pure Mathematics
  • 相关文献

参考文献3

二级参考文献16

  • 1[1]Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive system[J]. Phil Trans R Soc London, 1972, A272: 47~78. 被引量:1
  • 2[2]Liu T P, Matsumura A, Nishihara K.Behavior of solutions for the Burgers equation with boundary corresponding to rarefaction waves[J].SIAM J Math Anal, 1988, 29: 293~308. 被引量:1
  • 3[3]Mei M.Lq decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations[J].J Differential Equations,1999, 158: 314~340. 被引量:1
  • 4[4]Matsumura A, Nishihara K. Global stability of the rare-faction waves of a one-dimension model system for compressible viscous gas[J]. Comm Math Phys, 1992, 144: 325~335. 被引量:1
  • 5[5]Yang T, Zhao H J, Zhu C J. Asymptotic behavior of solution to a hyperbolic system with relaxation and boundary effect[J]. J Differential Equation, 2000, 163(2):348~380. 被引量:1
  • 6[6]Zhu C J. Quasilinear Hyperbolic Systems with Dissipation Effects[M]. Ph D Thesis,City University of Hong Kong,February, 1999. 被引量:1
  • 7[7]Zhao H J, Xuan B J.Existence and convergence of solutions for the generalized BBM-Burgers equation with dissipative terms[J]. Nonlinear Anal, 1997, 28: 1835~1849. 被引量:1
  • 8[8]Zhu C J. Asymptotic behavior of solutions for p-system with relaxation[J]. J Differential Equations, 2002, 180: 273~306. 被引量:1
  • 9[9]Smoller J. Shock waves and Reaction-Diffusion Equations[M]. New York-Berlin: Springer-Verlag, 1983. 被引量:1
  • 10YIN H, ZHAO H J, KIM J S. Convergence rates of solutions toward boundary layer solutions for generalized Benjanmin - Bona - Mahony - Burgers equations in the half- space[J]. J. Differential Equations, 2008 ,245 : 3144 - 3216. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部