期刊文献+

带一般边界和大初始扰动条件的广义BBM-Burgers方程解的渐近性态

Asymptotic behaviors of solutions for generalized BBM-Burgers equation with a general boundary and large initial disturbance
下载PDF
导出
摘要 研究广义BBM-Burgers方程ut+f(u)x=uxx+uxxt的一般初边值问题,其边界满足u(0,t)=u-(t)→u-(t→∞),u-(t)-u-≤0;初始值满足u(x,0)=u0(x)→u+(x→∞),u-(0)=u0(0)且u-<0<u+.在流函数f满足f″(u)>0,f'(0)=f(0)=0以及初边值为大扰动的条件下,用L2-能量方法证明其解的整体存在性及渐近收敛于强稳定波和强稀疏波的叠加. This paper is concerned with the initial-boundary value problem for the generalized BBM- Burgers equation ut+f(u)x=uxx+uxxt, with the general boundary condition u(0,t)=u_(t)→u_(t→∞),u_(t)-u_≤0 and the initial date satisfingu(x,0)=u0(x)→u+(x→∞),u_(0)=u0(0)且u_〈0〈u+. Under the condition that the flux functionfsatisfies f″(u)〉0,f′(0)=f(0)=0. we prove that the global solution exists and converges time-asymptotically to the superposition of a strong stationary wave and a strong rarefaction wave for the large initial-boundary disturbance by using of the L2 - energy method.
作者 陈诚
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2012年第5期455-460,共6页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家自然科学基金资助项目(10871082)
关键词 广义BBM-BURGERS方程 一般初边值问题 大扰动 L2-能量方法 generalized BBM-Burgers equation the initial-boundary value problem large disturbance L^2 - energy method
  • 相关文献

参考文献12

  • 1II 'IN A M, OLEINIK 0 A. Asymptotic behavior of thesolutions of the Cauchy problem for certain quasilinear equations for large-time [ J ]. Math USSR Sb, 1960, 5 : 197 -210. 被引量:1
  • 2NISHIHARA K. Asymptotic behavior of solution to viscous conservation laws via the L2-energy method [ C ]// lectures note delievered in summer school in Fudan university Shanghai, China, 1999. 被引量:1
  • 3LIU T P, MATSUMURA A, NISHIHARA K. Behaviors of solutions for the Burgers equation with boundary corre- sponding to rarefaction waves [ J ]. SIAM J Math Anal, 1998, 29(2): 293-308. 被引量:1
  • 4HASHIMOTO I, MATSUMURA A. large-time behavior of solution to an initial boundary value problem on the half line for scalar viscous conservation law[ J]. Methods Appl Anal, 2007, 14 : 45 - 60. 被引量:1
  • 5LIU T P, NISHIHARA K. Asymptotic behavior for scalar viscous conservation laws with boundary effect[ J]. J Differential Equations, 1997, 133 : 296 - 320. 被引量:1
  • 6MEI M. La decay rates of solutions for Benjamin-Bena- Mahony-Burgers equations [ J ]. J Differential Equations, 1999, 158:314-340. 被引量:1
  • 7ZHAO H J, XUAN B J. Existence and convergence of so- lutions for the generalized BBM-Burgers equations with dissipative term [ J ]. Nonliear Analysis Theory, Method And Application, 1997, 28: 1835- 1849. 被引量:1
  • 8ZHANG L. Decay of solution of generalized Benjamin-Bena-Mahony-Burgers equation in n-space dimension [ J ]. Nonlinear Analysis, 1995, 25 : 1343 - 1369. 被引量:1
  • 9XU Hong-mei, XIN Gu-yu. Decay rate of solutions of linear generalized Benjamin-Bona-Mahony-Burgers equation in multi dimensions [ J ]. Multimedia Technology, 2011, 30:2078 - 2080. 被引量:1
  • 10YIN H, ZHAO H J, KIM J S. Convergence rate of solutions toward boundary layer solutions for generalized Ben- jamin-Bona-Mahony-Burgers equations in the half-space [ J ]. J Differential equations, 2008, 245:3144 - 3216. 被引量:1

二级参考文献9

  • 1[1]Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive system[J]. Phil Trans R Soc London, 1972, A272: 47~78. 被引量:1
  • 2[2]Liu T P, Matsumura A, Nishihara K.Behavior of solutions for the Burgers equation with boundary corresponding to rarefaction waves[J].SIAM J Math Anal, 1988, 29: 293~308. 被引量:1
  • 3[3]Mei M.Lq decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations[J].J Differential Equations,1999, 158: 314~340. 被引量:1
  • 4[4]Matsumura A, Nishihara K. Global stability of the rare-faction waves of a one-dimension model system for compressible viscous gas[J]. Comm Math Phys, 1992, 144: 325~335. 被引量:1
  • 5[5]Yang T, Zhao H J, Zhu C J. Asymptotic behavior of solution to a hyperbolic system with relaxation and boundary effect[J]. J Differential Equation, 2000, 163(2):348~380. 被引量:1
  • 6[6]Zhu C J. Quasilinear Hyperbolic Systems with Dissipation Effects[M]. Ph D Thesis,City University of Hong Kong,February, 1999. 被引量:1
  • 7[7]Zhao H J, Xuan B J.Existence and convergence of solutions for the generalized BBM-Burgers equation with dissipative terms[J]. Nonlinear Anal, 1997, 28: 1835~1849. 被引量:1
  • 8[8]Zhu C J. Asymptotic behavior of solutions for p-system with relaxation[J]. J Differential Equations, 2002, 180: 273~306. 被引量:1
  • 9[9]Smoller J. Shock waves and Reaction-Diffusion Equations[M]. New York-Berlin: Springer-Verlag, 1983. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部