期刊文献+

带一般边界BBM-Burgers方程强边界层解的稳定性 被引量:2

Stability of strong boundary layer solution for BBM-Burgers equation with a general boundary effect
下载PDF
导出
摘要 研究带一般边界条件的广义BBM-Burgers方程ut-utxx-uxx+f(u)x=0的初边值问题边界层解的非线性稳定性,其边界条件为u(t,0)=ub(t)→ub(t→+∞),初始值u(0,x)=u0(x)→u+(x→+∞)(u+≠ub).在f″(u)>0,φx(x)<0,f'(ub)<0的条件下,用L2-能量方法证明其强边界层解具有非线性稳定性,从而澄清一般边界条件对边界层解的稳定性的影响. This paper is concerned with the nonlinear stability of boundary layer solution for general initial - boundary value problem for generalized BBM - Burgers equation u, - utxx - uxx +f(u) x = 0 with the general boundary condition u (t,0) = ub (t) →ub ( t→ + ∞ ) and the initial data u (0, x) = u0 (x) →+u + ( x→ + ∞ ) ( u +≠ ub ). Under the condition that f" (u) 〉 0, φx ( x ) 〈 0 and f ″ ( ub ) 〈 0, the strong boundary layer solution for the above initial - boundary value problem has nonlinear stability by means of an L2 - energy method were proved. And clarified the effect of the general boundary data on the stability of boundary layer solution.
作者 陈琴 刘艳
机构地区 暨南大学数学系
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2012年第2期205-209,共5页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 国家自然科学基金资助项目(10871082)
关键词 广义BBM—Burgers方程 边界层解 L2-能量方法 非线性稳定性 generalized BBM -Burgers equation boundary layer solution L2 -energymethod, nonlinear stability
  • 相关文献

参考文献7

  • 1YIN H, ZHAO H J, KIM J S. Convergence rates of solutions toward boundary layer solutions for generalized Benjanmin - Bona - Mahony - Burgers equations in the half- space[J]. J. Differential Equations, 2008 ,245 : 3144 - 3216. 被引量:1
  • 2YIN H, ZHAO H J, Nonliner stability of boundary layer solutions for generalized Benjanmin - Bona - Mahony - B - urgers equations in the half - space [ J ]. Kinetic and Related Models, 2009 (2) : 521 -550. 被引量:1
  • 3MEI M. Large - time behavior of solution for generalized Benjamin - Bona Mahony - Burgers equations [ J ]. Nonlinear Analysis, 1988,33 : 699 - 714. 被引量:1
  • 4LIU T P, MATSUMURA A, NISHIKAWA K. Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves[J]. SIAM J. Math. Anal., 1998,29: 293- 308. 被引量:1
  • 5KAWSHIMA S, NISHIBATA S, NISHIKAWA M. Asymptotic stability of stationary waves for two - dimensional viscous conservation laws in half plane[ J]. Discrete and Continuous Dynamical Systems, Supplement,2003(2) : 469 -476. 被引量:1
  • 6KAWASHIMA S, NISHIBATA S, NISHIKAWA M. energy method for multi - dimensional viscous conservation laws and applications to the stability of planar waves [ J ]. J. Hyperbolic Differential Equations, 2004 ( 1 ) : 581 -603. 被引量:1
  • 7NISHIHARA K. A note on the stability of traveling wave solution of Burgers' equation[J]. Japan J. Appl. Math, 1985 (2):27 -35. 被引量:1

同被引文献12

  • 1MEI M. Large - time behavior of solution for generalizedBenjamin - Bona - Mahony - Burgers equations[ J]. NonliearAnalysis, 1988, 33: 699 -714. 被引量:1
  • 2MEI M. decay rates of solutions for Benjamin - Bena -Mahony - Burgers equations[ J]. J. Differential Equations,1999,158: 314 -340. 被引量:1
  • 3ZhANG L. Decay of solution of generalized Benjamin - Bena-Mahony - Burgers equation in n - space dimensionf J].Nonlinear Analysis. 1995,25: 1343 - 1369. 被引量:1
  • 4ZHAO H J, XUAN B J. Existence and convergence ofsolutions for the generalized BBM - Burgers equations withdissipative term[ J]. Nonliear Analysis,Theory,Method AndApplication, 1997,28: 1835 - 1849. 被引量:1
  • 5XU H M,XIN G Y. Dcay rate of solutions of lineargeneralized Benjamin - Bona - Mahony - Burgers equation inmultidimensions[ J]. Multimedia Technology, 2011,30:2078 - 2080. 被引量:1
  • 6叶芳慧.具有一条边界影响的广义BBM- Burgers方程解的渐近性态[J].暨南大学学报:自然科学版,2007,28(3); 224 -225. 被引量:1
  • 7YIN H,ZhAO H J,KIM J S. Convergence rate of solutionstoward boundary lawyer solutions for generalized Benjamin -Bona - Mahony - Burgers equations in the half - space[ J].Differential equations, 2008,245:3144 - 3216. 被引量:1
  • 8YIN H, ZhAO H J, Nonlinear stability of boundary layersolutions for generalized Benjamin - Bona - Mahony - Burgersequations in the half - space[ J]. American Institute ofMathematical Sciences, 2009, 2:521 - 550. 被引量:1
  • 9HASHIMOTO I,MATSUMURA A. Large - time behavior ofsolutions to an initial - boundary value problem on the halfline for scalar viscous conservation law[ J]. Methods andApplications of analysis, 2007, 14: 45 - 60. 被引量:1
  • 10NAGASE J. Large - time behavior of solutions to an initial -boundary value problem on the half space for the generalizedBurgers equationf D]. Osaka:Osaka University, 2000. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部