期刊文献+

热传导方程初边值问题的三次样条解

Cubic Spline Solution to Initial Boundary Value Problems of Heat Transfer Equations
下载PDF
导出
摘要 本文利用Legendre-Gauss-Lobatto节点为配置点,构造含参数的三次样条函数来数值求解带Dirichlet边界条件的热传导方程。其中,空间方向用含参数的三次样条函数离散,选取适当的参数值以提高数值误差的精度;时间方向用Crank-Nicolson格式离散,构造算法格式。并给出相应的算法格式和数值算例,表明该算法格式的有效性和高精度。 In order to investigate the numerical solution approximated to the exact solution of the initial boundary value problems of the heat transfer equations,the cubic spline solution is given here.Using the parametric cubic spline function based on Legendre-Gauss-Lobatto node for the numerical solution of Dirichlet boundary value problems of the heat transfer equations,the spatial direction is discretized by cubic spline function with parameters,and the parameters are appropriately chosen to improve accuracy of numerical errors and use the Crank-Nicolson format to construct the algorithm scheme in the time direction.Finally,the algorithm and numerical examples are given to demonstrate the high efficiency and accuracy of the proposed algorithm.
作者 刘丹 王天军
出处 《应用数学进展》 2019年第8期1375-1383,共9页 Advances in Applied Mathematics
基金 国家自然科学基金项目(11371123).
  • 相关文献

参考文献7

二级参考文献24

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部