摘要
利用Legendre-Gauss-Lobatto节点为插值节点,构造Lagrange插值多项式,作为基函数展开问题的数值解,逼近有界杆上的非线性热传导方程Neumann边值问题的正确解。给出算法格式和相应的数值例子,表明所提算法格式的有效性和高精度。所给算法也可用于求解其他非线性问题的Neumann边值问题。
This paper deals with the numerical solutions of the nonlinear heat transfer with Neumann boundary condition on bounded interval.Legendre-Gauss-Lobatto nodes were used to construct the Nth degree Lagrange interpolation polynomial to approximate the solution of the nonlinear heat transfer with Neumann boundary condition.Efficient algorithms was implemented.Numerical results demonstrate its efficiency and high accuracy of this approach.Especially,it is much easier to deal with nonlinear heat transfer.The proposed method is also applicable to other nonlinear problems defined on certain bounded domains.
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2011年第2期68-71,111,共4页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(10871131)
河南科技大学博士启动基金项目(09001263)
河南科技大学SRTP基金项目(2009179)