期刊文献+

一类对称次反对称矩阵反问题解存在的条件 被引量:15

THE SOLVABILITY CONDITIONS FOR THE INVERSE PROBLEM OF SYMMETRIC AND SUB-ANTI-SYMMETRIC MATRICES
原文传递
导出
摘要 This paper considers the following two problems:Problem I: Give X, B∈R^n×m, find A∈SAR^n×n such that AX = B Where SAR^n×n is the set of all n×n symmetric and sub-anti-symmetric matrices. Problem Ⅱ: Give A^~∈R^n×n find A^∈ SE such that ‖A^~-A^‖= minA∈SE‖A^~-A‖ Where SE is the solution set of problem I, ‖·‖ is the Frobenius norm. The necessary and sufficient conditions are studied for the set SE to be nonempty set, the general form of SE is given. For problem II, the expression of the solutionis provided. This paper considers the following two problems: Problem Ⅰ : Give X, Be Rn×m, find A ∈SARn×n such that AX = B Where SARn×n is the set of all nxn symmetric and sub-anti-symmetric matrices. Problem Ⅰ: Give A ∈ Rn×n find A ∈ SE such that Where SE is the solution set of problem Ⅰ , ||·|| is the Frobenius norm. The necessary and sufficient conditions are studied for the set SEto be nonempty set, the general form of SEis given. For problem Ⅱ the expression of the solution is provided.
出处 《计算数学》 CSCD 北大核心 2004年第1期73-80,共8页 Mathematica Numerica Sinica
基金 国家自然科学基金资助项目(10171031) 北京市优秀人才专项经费资助项目(020320).
关键词 对称次反对称矩阵 反问题 范数 特征值 最小二乘解 Symmetric and sub-anti-symmetric matrics, matrix norm, optimal approximation
  • 相关文献

参考文献3

二级参考文献4

共引文献47

同被引文献76

引证文献15

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部