期刊文献+

反对称正交反对称矩阵反问题的最小二乘解(英文) 被引量:6

Least-square solutions of inverse problems for anti-symmetric ortho-antisymmetric matrices
下载PDF
导出
摘要 设P为一给定的对称正交矩阵, 记AARP = {A ∈ Rn n ×n AT = ?A,(PA)T = ?PA}. 讨论下列问题:问题Ⅰ给定X,B ∈ Rn ×m . 求A ∈ AARP使 AX ? B = min. n问题Ⅱ设A? ∈ Rn , 求A? ∈ SE 使 A? ? A? = infA ×n ∈SE A? ? A , 其中SE为问题Ⅰ的解集合, · 表示Frobenius范数. 研究AARP中元素的通式, 给出问题Ⅰ解的一般表达式, 证明了问题Ⅱ存在唯一逼近解A?, 且 n得到了此解的具体表达式. Given P ∈ ORn ×n satisfying PT = P. A ∈ Rn ×n is called anti-symmetric ortho-antisymmetric matrix if A = ?AT, (PA)T = ?PA. The set of all n × n anti-symmetric ortho-antisymmetric matrices is denoted by AARP. The n following two problems are discussed in this paper: Problem I: Given X,B ∈ Rn , ?nd A ∈ AARP such that f(A) = AX ? B = min, ×m n Problem II: Given A ∈ Rn , ?nd A? ∈ SE such that e ×n A ? A? = inf e A ? A e A∈SE where · is the Frobenius norm,and SE is the solution set of Problem I. For Problem I, the general form of SE is given. For Problem II, the expression of the solution is provided. Further- more, it is pointed that some results of References 2 and 7 are special cases of this paper.
出处 《黑龙江大学自然科学学报》 CAS 2004年第4期79-84,共6页 Journal of Natural Science of Heilongjiang University
基金 Supported by the Natural Science Foundation of China under (10171031 50208004)
关键词 反对称正交反对称矩阵 最小二乘解 最佳逼近 anti-symmetric ortho-antisymmetric matrix least-square solution optimal approximation
  • 相关文献

参考文献5

二级参考文献14

  • 1谢冬秀,张磊.一类反对称阵反问题的最小二乘解[J].工程数学学报,1993,10(4):25-34. 被引量:79
  • 2谢冬秀.几类约束矩阵方法及其最佳逼近,博士论文[M].湖南大学,1999.. 被引量:1
  • 3[7]G. H. Golub and C. F. Van Load, Matrix Computations, John Hopkins U. P. Baltimore,1989. 被引量:1
  • 4[8]Nashed, M. Z. (1976), Generalized Inverse and Application, Academic Press, New York. 被引量:1
  • 5[9]Xu Shufang, An Introduction to Inverse Algebraic Eigenvalue Problems, Peking University Press, 1998. 被引量:1
  • 6孙继广.实对称矩阵的两类逆特征值问题[J]计算数学,1988(03). 被引量:1
  • 7孙继广.一类反特征值问题的最小二乘解[J]计算数学,1987(02). 被引量:1
  • 8Per-?ke Wedin. Perturbation theory for pseudo-inverses[J] 1973,BIT(2):217~232 被引量:1
  • 9孙继广.实对称矩阵的两类逆特征值问题[J]计算数学,1988(03). 被引量:1
  • 10张磊.一类矩阵反问题及其数值解法[J]计算数学,1987(04). 被引量:1

共引文献133

同被引文献25

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部