期刊文献+

椭圆曲线y^2=nx(x^2-2)的整数点 被引量:8

Integral Points on Elliptic Curve y^2=nx(x^2-2)
下载PDF
导出
摘要 目的椭圆曲线的整数点是数论中的一个重要问题。关于椭圆曲线y2=nx(xI2-2)的整数点问题至今仍未解决。方法利用同余、Legendre符号的性质等初等方法。结果证明n≡3(mod8)为奇素数时椭圆曲线y2=nx(x2-2)无正整数点;n≡5(mod8)为奇素数时椭圆曲线y2=nx(x2-2)至多有2个正整数点。结论此结果推进了该类椭圆曲线的研究。 Objective The integral points on elliptic curve is a very important problem of Number The-ory.The integral points on elliptic curve y2 =nx(x2-2)still remain unresolved.Methods Properties of the solutions to congruence and Legendre symbol.Results It is proved that if n is an odd prime and n≡3 (mod8),then the elliptic curve in title has no positive integeral points;if is an odd prime and n ≡5(mod8),then the elliptic curve in title has at most two positive integeral points.Conclusion These re-sults promote the study on the kind of elliptic curve.
作者 李润琪 刘霄
出处 《河北北方学院学报(自然科学版)》 2016年第3期10-11,20,共3页 Journal of Hebei North University:Natural Science Edition
基金 云南省教育厅科学研究项目(2014Y462)
关键词 椭圆曲线 正整数点 奇素数 elliptic curve integeral point odd prime
  • 相关文献

参考文献14

二级参考文献65

  • 1Cassels J. W. S., A diophantine equation[J], Glasgow Math. J., 1985, 27(1):11-18. 被引量:1
  • 2Luca F. and Walsh P. G. , On a diophantine equation of Cassels[J]. Glasgow Math. J. , 2005, 47(2) : 303-307. 被引量:1
  • 3Ljunggren W. Some remarks on the diophantine equations x^2-Dy^4=1 and x^4-Dy^2=1[J].London Math Soc, 1996, 41(4):542-544. 被引量:1
  • 4Walsh G. , A note on a theorem of Ljunggren and the diophantine equation x^2-kxy^2+y^4=1,4[J].Arch. Math. Basel, 1999, 73(1) :119-125. 被引量:1
  • 5Delone B. N. and Faddeev D. K. , The theory of irrationalities of the third degree[J], Translation of Math. Monographs, 1964, 10(2): 370-380. 被引量:1
  • 6Petr J. Sur 1' equation de Pell [J]. Casopis Pest Mat Fys, 1927, 56(1) :57-66. (in Czech). 被引量:1
  • 7Luca F. and Walsh P. G., Squares in Lucas sequences with diophantine applieations[J], Acta Arith. , 2001, 100(1): 47-62. 被引量:1
  • 8Ljunggren W. Ein Satz ? ber die Diophantische Gleichung Ax^2-By^4=C(C=1,2,4)[J].Tolfte Skand Matemheikerkongressen, Lund, 1953, 12: 188-194. 被引量:1
  • 9Baker A.Linear forms in the logarithms of algebraic number Ⅰ.Mathematika,1966.13:204-216; Ⅱ ibid,1967,14:102-107:Ⅲ ibid,1967.14:220-228; Ⅳ ibid; 1968,15:204-216. 被引量:1
  • 10Stroeker R J,Tzanakis N.Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms.Acta Arith,1994,29(2):177-196. 被引量:1

共引文献96

同被引文献27

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部