期刊文献+

高维条件协方差矩阵的非线性压缩估计及其在构建最优投资组合中的应用 被引量:9

Nonlinear Shrinkage Estimation of High Dimensional Conditional Covariance Matrix and its Application in Portfolio Selection
原文传递
导出
摘要 本文将非线性压缩方法运用到DCC和BEKK模型中,用非线性的压缩估计量代替MMLE估计中初始的样本协方差矩阵,大大提高了高维DCC和BEKK模型的估计效率,并突破性地使得横截面维度大于时间维度时,DCC和BEKK模型的有效估计成为可能。蒙特卡洛模拟发现:非线性压缩方法对于DCC和BEKK模型估计的优化作用显著,且优化程度随着横截面维度和时间维度的比值增大而增加。实证分析进一步说明了非线性压缩方法对于准确估计高维条件协方差矩阵、从而提高组合选择效率的重要作用。 It is well known that the traditional maximum likelihood estimation of GARCH model is severely biased in high dimensions.In this paper,the nonlinear shrinkage method proposed by Ledoit and Wolf is used to estimate DCC and BEKK models.In particular,the initial sample covariance estimator in maximum m-profile quasi-likelihood estimation(MMLE)proposed by Engle et al.is substituted by the nonlinear shrinkage estimator,which turns out to largely improve the estimation efficiency of high dimensional DCC and BEKK models,and for the first time,makes the valid estimation possible when the sample size is larger than the time series dimension.Based on the Percentage Relative Improvement in Average Loss(PRIAL),the Monte-Carlo simulations verify the obvious superiority of the nonlinear shrinkage substitution over the usual DCC and BEKK,which even strengthens as the ratio between sample size and time series dimension increases.Besides,for both DCC and BEKK,the performance of nonlinear shrinkage estimation is better than that of linear shrinkage,while linear shrinkage estimation is better than the usual estimation.Furthermore,the performance of DCC is better than BEKK,and the optimizing effect of nonlinear shrinkage on DCC is more significant than on BEKK.Finally,in the empirical part,using daily stock return data from the Center for Research in Security Prices(CRSP),the global minimum variance(GMV)portfolios of stocks traded in NYSE and NASDAQ are constructed based on various methods,and their real variances are compared.The empirical result supports the important role nonlinear shrinkage plays in promoting the estimation of high dimensional conditional covariance matrix,and thus in optimizing the portfolio selection.
作者 赵钊
出处 《中国管理科学》 CSSCI CSCD 北大核心 2017年第8期46-57,共12页 Chinese Journal of Management Science
基金 国家自然科学基金面上资助项目(71671070)
关键词 非线性压缩 线性压缩 条件协方差矩阵 nonlinear shrinkage linear shrinkage conditional covariance matrix
  • 相关文献

参考文献3

二级参考文献85

  • 1于志军,杨善林.基于误差校正的GARCH股票价格预测模型[J].中国管理科学,2013,21(S1):341-345. 被引量:15
  • 2王明进,陈奇志.基于独立成分分解的多元波动率模型[J].管理科学学报,2006,9(5):56-64. 被引量:21
  • 3许启发,张世英.多元条件高阶矩波动性建模[J].系统工程学报,2007,22(1):1-8. 被引量:24
  • 4Bollerslev, T.. Modeling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model [J]. Review of Economics and Statistics, 1990, 72:498-505. 被引量:1
  • 5Tse, Y. K. , Tsui,K. C. . A multivariate generalized autoregressive conditional heteroscedastielty model with time varying correlations [J]. Journal of Business and Economic Statistics, 1999, 20:351-362. 被引量:1
  • 6Engle, R.. Dynamic conditional eorrelation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models [J]. Journal of Business and Economic Statistics, 2002, 20: 339-350. 被引量:1
  • 7Engle, R. F. , Ng,V. K. , Rothschild,M.. Asset pri cing with a factor ARCH covarianee structure: Empiri cal estimates for treasury bills [J]. Journal of Econo metrics, 1990, 45:213-238. 被引量:1
  • 8Ding, Z.. Time Series Analysis of Speculative Returns [D]. PhD Dissertation, University of California at San Diego, 1994. 被引量:1
  • 9Alexander, C. , Chibumba, A.. Multivariate Orthogonal Factor GARCH [Z]. University of Sussex, Mimeo, 1997. 被引量:1
  • 10Bollerslev, T. , Engle, R. F. , Wooldridge, J. M.. A capital asset pricing model with time varying covariances [J]. The Journal of Political Economy, 1988, 96: 116- 131. 被引量:1

共引文献49

同被引文献38

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部