期刊文献+

基于独立成分分解的多元波动率模型 被引量:21

Multivariate volatilities modeling based on independent components
下载PDF
导出
摘要 利用独立成分分解(ICA)提出了一类新的多元波动率模型———IC-GARCH模型.通过研究上海A、B股以及亚洲5个股票市场等两个真实数据的例子,进一步分析比较了该模型与Morgan在RiskmetricsTM中使用的EWMA模型和基于主成分分解的O-GARCH模型的拟合效果. Multivariate volatility model play an important role in portfolio construction, asset pricing and risk management. In practice, since a large number of assets are considered simultaneously, the two most common models are the exponential weighted moving average (EWMA) model suggested in J.P. Morgan' s RiskmetricsTM and orthogonal GARCH (O-GARCH) model based on principal component analysis (PCA) of the return series. However, the assumptions used in both models are too restrictive. For instance, principal components (PCs) are unconditionally uncorrelated but not necessarily conditionally correlated, so their conditional covariance matrix may not be diagonal and O-GARCH model is not reliable in this sense. This paper puts forward a new multivariate volatility model, i.e., IC-GARCH model, based on the so-called independent component analysis (ICA). It is expected that the conditional covariance matrix of ICs may look more like a diagonal one than that of PCs, which hopefully can remedy the defect of O-GARCH model. Two real data sets are used to illustrate the power of IC-GARCH model. The results from two mis-specification tests both demonstrate the advantage of IC-GARCH model over EWMA and O-GARCH models.
出处 《管理科学学报》 CSSCI 北大核心 2006年第5期56-64,共9页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(70201007)
关键词 独立成分分解 IC-GARCH模型 O-GARCH模型 条件相关系数 independent component analysis (ICA) IC-GARCH model O-GARCH model conditional correlation coefficient
  • 相关文献

参考文献17

  • 1Tsay R S. Analysis of Financial Time Series[M]. New York: John Wiley & Sons, Inc. , 2001. 被引量:1
  • 2Bauwens L, Laurent S, Rombouts J V K, Multivariate GARCH models: A survey[Jl, Journal of Applied Econometrics, 2006, 21: 79-109. 被引量:1
  • 3Morgan/Reuters J P.Riskmetrics^TM-Technical Document[ M].4th Edition, New York: Morgan Guaranty Trust Company, 1996. 被引量:1
  • 4Alexander C, Orthogonal GARCH. In Mastering Risk (Ⅱ).London: Financial Times-Prentice Hall, 2001. 被引量:1
  • 5Fan J, Wang M, Yao Q, Modeling Multivariate Volatilities Via Conditional Uncorrelated Components[R], Department of Statistics, London School of Economics and Political Science, 2004, http: //stats.lse. ac. uk/q. yao/qyao. links/paper/fwy05. pdf 被引量:1
  • 6Bollerslev T, Engle R F, Wooldridge J M. A capital asset pricing model with time-varying covariances[J]. Journal of Political Economy, 1988, 99: 116-131. 被引量:1
  • 7Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[M]. New York: Wiley, 2001. 被引量:1
  • 8Hyvairinen A, Oja E. A fast fixed-point algorithm for independent component analysis[J]. Nettral Computation, 1997, 9: 1483- 1492. 被引量:1
  • 9Robert S, Everson R. Independent Component Analysis: Principles and Practice[M]. Cambridge: Cambridge University Press, 2001. 被引量:1
  • 10Huber P J. Projection pursuit[J]. The Annals of Statistics, 1985, 13: 435-475. 被引量:1

同被引文献352

引证文献21

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部