期刊文献+

融合低精度GPS/IMU参数的无人机影像批处理三维重建方法 被引量:8

Batched 3D Reconstruction of UAV Images Fused Low Precision Position and Orientation Parameters
下载PDF
导出
摘要 无人机序列影像具有高分辨率、高重叠度的特点,被用于大范围场景三维重建。现有多视图三维重建算法在处理大规模无人机序列影像时耗时严重、结果不稳定。将无人机低精度GPS/IMU参数融合到大规模无人机序列影像三维重建过程中,设计实现了无人机序列影像批处理三维重建方法。利用低精度GPS/IMU先验信息进行图像匹配,降低了重建中图像匹配的时间消耗以及减少误匹配;通过建立极线图和绘制多视图中点的轨迹,并结合低精度GPS/IMU信息,一次性求解全局坐标系下所有图像的旋转矩阵,只执行一次捆绑调整函数,降低了重建时优化的时间复杂度。通过实验验证了本方法在保证精度的同时提高了效率。 The images sequence captured by UAV has the high resolution and high overlapping characteristics, so it is used in a wide range of scene reconstruction. However, the result of these state-of-art multi-view 3D reconstruction algorithms is unstable when dealing with large-scale UAV thousands of images. In this regard, the UAV low accuracy GPS / IMU parameters sequence was fused to the large-scale UAV image reconstruction process and the UAV sequence batched image reconstruction method was proposed. The image matching time and false matching number was reduced by using low-precision GPS / IMU priori information. Through the establishment of a polar graph and drawing the midpoint of the track multi-view, combined with low-accuracy GPS / IMU information, the global coordinate system rotation matrix of all the images was disposably solved, executing only when a bundle adjustment function, reducing the reconstruction optimization of time complexity. Experimental verification of this method ensures accuracy while improving efficiency.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第10期2409-2415 2421,2421,共8页 Journal of System Simulation
基金 国家自然科学基金(41401465 41371384)
关键词 序列影像 三维重建 GPS/IMU参数 PMVS image sequence 3D reconstruction GPS/IMU parameters PMVS
  • 相关文献

参考文献12

  • 1T. P. Kersten,M. Lindstaedt.Potential of Automatic 3D Object Reconstruction from Multiple Images for Applications in Architecture, Cultural Heritage and Archaeology[J]. International Journal of Heritage in the Digital . 2012 (3) 被引量:1
  • 2K. Mikolajczyk,T. Tuytelaars,C. Schmid,A. Zisserman,J. Matas,F. Schaffalitzky,T. Kadir,L. Van Gool.A Comparison of Affine Region Detectors[J]. International Journal of Computer Vision . 2005 (1) 被引量:2
  • 3David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2) 被引量:42
  • 4Peter N. Belhumeur.A Bayesian approach to binocular steropsis[J]. International Journal of Computer Vision . 1996 (3) 被引量:1
  • 5Martin A. Fischler,Robert C. Bolles.Random sample consensus[J]. Communications of the ACM . 1981 (6) 被引量:10
  • 6STRECHA C,PylVANAINEN T,FUA P.Dynamic and scalable large scale image reconstruction. IEEE Conference on Computer Vision and Pattern Recognition . 2010 被引量:1
  • 7Yasutaka Furukawa,Jean Ponce.Accurate, Dense, and Robust Multiview Stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2010 被引量:2
  • 8D Niste?r.An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2004 被引量:2
  • 9MARTINEC D,PAJDLA T.Robust Rotation and Translation Estimation in Multiview Reconstruction. IEEE Conference on Computer Vision and Pattern Recognition . 2007 被引量:1
  • 10Sawyer S M,Ni K,Bliss N T.Cluster-based 3D reconstruction of aerial video. High Performance Extreme Computing,2012 IEEE Conference on IEEE . 2012 被引量:1

共引文献48

同被引文献49

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部