期刊文献+

应用SFM和多视图面片实现牙模三维重建 被引量:7

3D Reconstruction of Teeth Models Based on SFM and Patches-Based Multi-View Stereo
下载PDF
导出
摘要 为了从图像序列中恢复牙齿的三维结构,对从运动中恢复(SFM)和多视图面片(PMVS)三维重建方法进行了研究;首先,利用SFM方法从图像序列中恢复相机参数并估计相机位置;其次,针对标定好的序列图像,通过Harris和DOG检测特征点并在图像对中匹配,得到一系列稀疏的面片,根据光照一致性扩展这些初始的匹配到邻近像素,得到比较密集的面片,然后利用可视化约束条件,消除错误的匹配,最终生成三维模型的面片集合;最后把生成的面片集合转换为点云集合;经过大量的实验得出了一组具有较好实验效果的参数,分别为β1=2,β2=16,μ=5,α0=0.5;实验结果表明,该算法能够有效地重建出牙齿的三维结构,并具有很好的视觉效果;SFM方法能够有效地标定相机,基于多视图面片三维重建方法能够很好地重建出物体的三维模型,两种方法相结合是非常好的三维重建方法。 In order to reconstruct the 3D structure of the teeth model from the image sequence, the structure from motion (SFM) and Patches-Based Multi-View Stereo (PMVS) method was studied. Firstly, the SFM method was used to recover the camera parameters and estimation of the position of the camera calibration; secondly, according to the calibrated image sequences, use the Harris and DOG detect feature points in each image and matching the points in image pair, get a series of sparse patches and use the photometric to extent these ini- tial matching to neighboring pixels to get relatively dense patches, then use the visualization constraint condition to eliminate the error matc- hing, generate a 3D model of the patch set; finally, convert the patch set to point cloud collection. The experimental results show that the al- gorithm can effectively reconstruct the 3D structure of the teeth model, and it has a very good visual effect. The SFM method can calibrate the camera effectively, The Patches-Based Multi-View Stereo method can reconstruct the 3D model effectively, so the combination of these two methods is a very good method for 3D reconstruction.
出处 《计算机测量与控制》 北大核心 2013年第4期1067-1070,共4页 Computer Measurement &Control
基金 中国科学院知识创新工程重要方向项目(KGCX2-YW-909) 苏州生物医学工程技术研究所二期建设重大项目(PET/CT项目)(Y053011305) 苏州市科技计划项目资助(YJS0952) 长春市科技计划项目资助(09K218)
关键词 三维重建 SFM PMVS SIFT HARRIS DOG three-dimensional reconstructiom SFM PMVS SIFT Harris DOG
  • 相关文献

参考文献10

  • 1马颂德,张正友.汁算机视觉计算理论与算法基础[M].北京:科学出版社,1998. 被引量:1
  • 2唐正宗,梁晋,肖振中,郭成.用于三维变形测量的数字图像相关系统[J].光学精密工程,2010,18(10):2244-2253. 被引量:65
  • 3边心田,苏显渝,陈文静.基于条纹投影的三维坐标测量方法[J].光学学报,2010,30(2):416-420. 被引量:12
  • 4Noah Snavely,Steven M. Seitz,Richard Szeliski. Photo Tourism:Exploring Photo Collection in 3D [ J ]. ACM Transactions onGraphics,2006,25(3). 被引量:1
  • 5朱芹..基于多视点图像的三维重构算法的研究及实现[D].兰州大学,2009:
  • 6Mikolajczyk K,Tuytelaars T,Schmid C,et ai. A comparison of af-fine region detectors [J]. Int. J. of Computer Vision 65,2005. 1/2,43-72. 被引量:1
  • 7FivSchler M,Bolles R. Random sample consensus:a paradigm formodel fitting with applications to image analysis and automated car-tography [J]. Readings in computer vision:issues,problems? prin-ciples,and paradigms,726. 740. 1987. 被引量:1
  • 8Hartley R I,Zisserman A. Multiple View Geometry [ M]. Cam-bridge University Press,Cambridge,UK. 2004. 被引量:1
  • 9Furukawa Y,Ponce J. Carved visual hulls for image based model-ing [A]. In ECCV [C]. volume 1,2006. 被引量:1
  • 10Furukawa Y,Ponce J. High-fidelity image-based modeling[R]. Technical Report CVR 2006-02,University of Illinois atUrbana-Champaign,2006. 被引量:1

二级参考文献26

共引文献75

同被引文献50

  • 1陈允芳,叶泽田,谢彩香,石波,王贵宾.IMU/DGPS辅助车载CCD及激光扫描仪三维数据采集与建模[J].测绘科学,2006,31(5):91-92. 被引量:32
  • 2Goesele M B,Seitz S M. Multi-view stereo revisited[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society,2006 : 2402-2409. 被引量:1
  • 3Furukawa Y,Ponce J. Accurate,dense,and robust multi-view stereopsis[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA : IEEE Computer Society, 2007 : 1-8. 被引量:1
  • 4Lowe D. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004,60(2 ) :91-110. 被引量:1
  • 5Gordon I, Lowe D G. What and Where:3D object recognition with accurate pose[J]. Toward Category-level Object Recognition, 2006,30( 12):67- 82. 被引量:1
  • 6Todd J T,Bressan P. The perception of 3-dimensionalaffine structure from minimM apparent m~ion sequences[J].Perception & Psychophysics, 1990,45(5):419-430. 被引量:1
  • 7Nist~rD. An efficient solution to the five-point relmive pose problem[J]. IEEE Transactions on P~tern AnMysis and Machine Intelligence, 2004,26(6):756-777. 被引量:1
  • 8Lourakis M,Argyros A. The design and implementation of a generic sparse bundle adjustment software package based on the Levenberg- Marquardt algorlthm[R]. Greece:Institute of Computer Science of the Foundation for Research and Technology, 2004:5-16. 被引量:1
  • 9Hartley R I ,Zisserman A. Multiple View Geometry in Computer Vision[M]. UK:Cambridge University,2004i 159-177. 被引量:1
  • 10王国伟.面向建筑物的三维点云生成、增强和重建技术研究[D].长沙:国防科学技术大学,2011. 被引量:1

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部