期刊文献+

产品虚假评论文本识别方法研究述评 被引量:16

Detecting Product Review Spam: A Survey
原文传递
导出
摘要 【目的】对产品虚假评论文本识别方法研究现状进行述评。【文献范围】以“Review Spam”、“虚假评论”等为主题词在WoS、CNKI、EI等8个数据库中进行文献检索,经过文献主题筛选、质量评估和参考文献追溯等步骤获得代表性文献90篇。【方法】采用系统性文献综述过程对虚假评论文本识别方法研究的关键内容进行提取、归纳和分类,总结并对比分析各类虚假特征的表征力和识别方法性能。【结果】虚假特征设计和识别方法设计是虚假评论文本识别的关键步骤,大规模标注评论数据的获取是当前研究的难点。【局限】仅以虚假评论文本识别方法作为探讨核心,未探讨虚假评论者及虚假评论者群体识别方法。【结论】分析并指出现有研究在数据集获取、虚假特征设计和识别方法设计三个方面存在的问题,并对虚假评论文本识别未来研究提出建议。 [Objective]This paper reviews current studies on fighting product review spam.[Coverage]We searched“review spam”with eight major scholarly databases(e.g.,WoS,CNKI and EI,etc.),and retrieved a total of 90 relevant papers.[Methods]First,we adopted systematic review procedure to identify and categorize the methods detecting product review spam.Then,we compared the impacts of spam features on detection performance.[Results]The spam features and detection methods were the key issues in fighting product review spam.The acquisition of large-scale annotation data was a challenging task for current research.[Limitations]We did not examine the detection and classification methods for spammers.[Conclusions]This paper analyzes spam detection methods from the perspectives of data acquisition,spamming features and detection methods.It offers suggestions and directions for future research.
作者 吴佳芬 马费成 Wu Jiafen;Ma Feicheng(Center for Studies of Information Resources,Wuhan University,Wuhan 430072,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第9期1-15,共15页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金重点国际合作项目“大数据环境下的知识组织与服务创新研究”(项目编号:71420107026)的研究成果之一
关键词 虚假评论识别 虚假评论文本 虚假特征 识别方法 Review Spam Detection Review Spam Spamming Features Detection Methods
  • 相关文献

参考文献13

二级参考文献199

  • 1http://www.cs.waikato.ac.nz/ml/weka/. 被引量:5
  • 2JINDAL N, Liu Bing. Review spare detection [C]. Proceedings of the 16th International Conference on World Wide Web, 2007 : 1189-1190. 被引量:1
  • 3JINDAL N,Liu Bing.Opinion spare and analysis[C].Proceedings of the International Confence on Web Search and Web data mining, 2008 : 219-230. 被引量:1
  • 4HU M,Liu Bing.Mining and summarizing customer reviews [C].Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2004 168-177. 被引量:1
  • 5PANG Bo,LILLIAN L E.Opinion mining and sentiment analysis[J].Foundations and Trends in Information Retrieval. 2008,2(1-2): 1-135. 被引量:1
  • 6BRODER A Z.On the resemblance and containment of dncuments[C].Proceedings of the Compression and Complexity of Sequences. 1997 : 21-29. 被引量:1
  • 7Jindal N, I.iu B. Review spare detection. Proceedings of the 16-th International Conference on World Wide Web,2007:1189-1190. 被引量:1
  • 8谭文堂,朱洪,葛斌等.垃圾评论自动过滤方法.同防科技大学学报,2012,34(5):153-157. 被引量:1
  • 9Feng S,Banerjee R,Chai Y J. Syntactic stylometry for deception detection. Proceedings of the 50^th Annual Meeting of the Association for Oomputational I.inguistics, 2012 : 8- 14. 被引量:1
  • 10Jindal N, Liu B, Lim E P. Finding unusual review patterns using unexpected rules. Proceedings of the 19^th ACM International Conference on Information and Knowledge Management. 2010 : 1549- 1552. 被引量:1

共引文献154

同被引文献180

引证文献16

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部