期刊文献+

一种基于BP算法的融合神经网络 被引量:6

A Fused Neural Network Based on BP Algorithm
下载PDF
导出
摘要 针对水电仿真系统水机温度建模中存在非线性动态数学模型问题,提出了一种采用融合神经网络的温度模型·并且为消除应用中神经网络训练速度慢、容易陷入局部极值的影响,采用了可变学习速度的VLBP算法作为更新网络梯度和权值的算法·在该模型的实际应用中,首先设置多个传感器采集温度参数,然后使用采集数据对神经网络进行离线训练,而后使用训练完成的网络对水机温度参数进行实时在线预测·通过现场数据和网络预测数据的对比分析,证明该模型的实际准确率可达96 5%,可以满足实际仿真的要求· A temperature model, as a nonlinear dynamic one, was set up on a basis of fused neural network for the hydroelectric plants. The VLBP (Variable Learningrate Back Propagation) algorithm was utilized to update network gradients and weight values with the aim of eliminating the slowness in the drill application of the neural network which is easy to get into local extremum. In applications of the model, several temperatureacquisition parameters should be set for sensors, then use such parameters to drill offline the fused neural network. Thus, the realtime online forecasts will be available to the temperature parameters of hydroelectric power generator if using the drilled network. Actual accuracy of the model can be up to 96.5% through a comparison discussed between the data acquired and forecasted using the network. So, the model can be regarded as meeting the requirements of the simulation.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第11期1037-1040,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(69873007).
关键词 融合神经网络 VLBP算法 水电仿真 信息融合 温度模型 fused neural network variable learning-rate back propagation algorithm hydroelectric simulation information fusion temperature model
  • 相关文献

参考文献10

  • 1丛爽编著..面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,1998:180.
  • 2徐凌宇,杜庆东,赵海.嵌入式水电事故预测系统中信息融合的方法[J].东北大学学报(自然科学版),2000,21(1):8-11. 被引量:21
  • 3侯祥林,陈长征,虞和济,王铁光,纪盛青.神经网络权值和阈值的优化方法[J].东北大学学报(自然科学版),1999,20(4):447-450. 被引量:49
  • 4赵海.[D].沈阳:东北大学,1994:36~45. 被引量:4
  • 5何友:王自丢.多传感器信息融合及应用[M].北京:电子工业出版社,2000.156—160. 被引量:1
  • 6Huang S H , Zhang H C. Artificial neural network in manufacturing: concepts, applications, and perspectives[J]. IEEE Transaction on Components Packaging and Manufacturing Technology, 1994,17(2) :212 - 228. 被引量:1
  • 7Hall D. Mathematical techniques in multisensor data fusion [M]. London: Arteeh House Ine, 1992.235 -238. 被引量:1
  • 8Xu L Y, Du Q D. Application of neural fusion to accident forecast in hydropower station [ A]. Proceedings of the Second International Conference on Information Fusion [C]. Sunnyvale: Omni Press, 1999. 1166- 1171. 被引量:1
  • 9Rumelhart D E, Hinton G E. Leaming internalrepresentations by back-propagation error [J ]. Nature,1986,323(9) :533 - 536. 被引量:1
  • 10Martin T, Howard B, Mark H, et al. Neural net~_orkdesign [ M]. Boston: PWS Publishing Company, 19%. 227 - 232. 被引量:1

二级参考文献7

共引文献69

同被引文献37

  • 1郑佳春,张杏谷,邵哲平,林月美.基于模糊神经网络的航海信息融合技术研究[J].中国航海,2003,26(4):19-22. 被引量:5
  • 2陈培彬,陈治平,齐建文,叶结松.基于CBR的机载雷达故障诊断专家系统研究[J].计测技术,2005,25(1):9-11. 被引量:5
  • 3陈圣磊,吴慧中,肖亮,朱耀琴.协同设计任务调度的多步Q学习算法[J].计算机辅助设计与图形学学报,2007,19(3):398-402. 被引量:11
  • 4Sutton R S, Barto A G. Reinforcement learning: an introduction[M]. Cambridge: The MIT Press, 1998. 被引量:1
  • 5Crites R H, Barto A G. Elevator group control using multiple reinforcement learning agents [ J ]. Machine Learning, 1998,33(2/3) ;235 - 262. 被引量:1
  • 6Bucak I O, Zohdy M A. Reinforcement lemming control of nonlinear multi-link system[J].Engineering Application of Artificial Intelligence, 2001,14 (5) :237 - 285. 被引量:1
  • 7Tsitsiklis J N, Roy B V. An analysis of temporal difference learning with function approximation[J]. IEEE Transactions on Automatic Control, 1997,42(5):674- 690. 被引量:1
  • 8Walkins C J, Dayan P. Q-learning[J]. Machine Learning, 1992,8(3/4) :279 - 292. 被引量:1
  • 9Singh S P, Jaakkloa T, Littman M L. Convergence results for single-step on policy reinforcement learning algorithms [J]. Machine Learning, 2000,38(3) :287- 308. 被引量:1
  • 10White D J. A survey of application of Markov decision processes [ J]. The Journal of the Operational Research Society, 1993,44( 11 ) : 1073 - 1096. 被引量:1

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部