期刊文献+

一类0/1优化问题融合神经网络的粒子群算法 被引量:4

PSO algorithm connected with neural network for solving a class of 0/1 optimization problems
下载PDF
导出
摘要 将局部寻优能力极强的人工Hopfield神经网络算法融合到粒子群优化算法的搜索过程中,提出解决一类0/1优化问题融合神经网络的混合粒子群优化算法。在该算法中依粒子群当前全局最优个体为初始态激活神经网络,生成一个局部最优态,用这个局部最优态代替粒子群当前全局最优个体,增强了算法的局部寻优能力,通过数值试验证明该算法是有效的。 A hybrid PSO algorithm was proposed, where the Hopfield manpower neural network with better local searching ability was combined with PSO for solving a class of 0/1 knapsack problem. The current global optimum chromosome activated the neural network and obtained a local optimum state that was used to replace the current global optimum chromosome in this algorithm. Local optimization ability of the algorithm was strengthened. Numerical test shows that this algorithm is effective.
出处 《计算机应用》 CSCD 北大核心 2008年第6期1559-1562,共4页 journal of Computer Applications
基金 国家社会科学基金资助项目(07XJY038)
关键词 粒子群优化 神经网络 0/1优化问题 Particle Swarm Optimization (PSO) neural network 0/1 optimization problem
  • 相关文献

参考文献10

  • 1EBERHART R C, SH1 YU-HU1. Particle swarm optimization: Developments, applications and resources [ C]// Proceedings of the IEEE Congress on Evolutionary Computation. Washington: IEEE Service Center, 2001 : 81 - 86. 被引量:1
  • 2谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 3夏桂梅,曾建潮.微粒群算法的研究现状及发展趋势[J].山西师范大学学报(自然科学版),2005,19(1):23-25. 被引量:19
  • 4SHI YU-HUI, EBERHART R. Empirical study of particle swarm optimization [ C]//Proceedings of the IEEE Congress on Evolutionary Computation. Washington: IEEE Press, 1999: 1945-1950. 被引量:1
  • 5CLERC M. Discrete particle swarm optimization [C]//New Optimization Techniques in Engineering. Berlin: Spring-Verlag, 2004: 219 -240. 被引量:1
  • 6XU Z B, HUG Q, KWONG C P. Asymmetric hopfield-type networks: Theory and applications [ J]. Neural Netwolk, 1996, 9( 31) : 483 -510. 被引量:1
  • 7赵传信,季一木.粒子群优化算法在0/1背包问题的应用[J].微机发展,2005,15(10):23-25. 被引量:21
  • 8徐俊杰,忻展红.粒子群优化在0/1背包问题中应用[C]//中国运筹学会第七届学术交流会论文集.青岛:Global.Link出版社,2004:131-135. 被引量:1
  • 9邢文训,谢金星编著..现代优化计算方法[M].北京:清华大学出版社,1999:298.
  • 10徐宗本.计算智能-模拟进化计算[M].北京:高等教育出版社,2005.50-55. 被引量:8

二级参考文献56

  • 1谭瑛,高慧敏,曾建潮.求解整数规划问题的微粒群算法[J].系统工程理论与实践,2004,24(5):126-129. 被引量:43
  • 2曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 3张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:227
  • 4[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930. 被引量:1
  • 5[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469. 被引量:1
  • 6[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100. 被引量:1
  • 7[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976. 被引量:1
  • 8[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948. 被引量:1
  • 9[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43. 被引量:1
  • 10[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994. 被引量:1

共引文献461

同被引文献37

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部