期刊文献+

高维数据均值的统计监测 被引量:2

Statistical Process Monitoring of High-dimensional Data
原文传递
导出
摘要 本文,我们结合统计过程控制方法,使用一种新的统计量用于在样本数量不充足的情况下监测高维数据。统计量利用样本协方差规范化技术避免协方差矩阵的奇异性,同时采用软阈值技术来挑选多维数据中重要的维度进行监测以减少监测噪音。本文在提出统计量后用matlab随机产生各种维度的高维数据样本进行仿真分析,并将该统计量与基于Hotelling T^2并采取广义逆矩阵的统计量进行比较。结果表明,本文使用的统计量的监测效果优于采取广义逆矩阵的方法。本文提出的方法可以应用于多指标产品生产的快速异常检测,特别是难以得到大量检测数据的产品,如检测需要破坏产品本身或者检测成本太高的产品。 In this paper we combine basic statistical process control method,using a new statistic to monitor high-dimensional data when the sample size is not big enough.The statistic applies sample covariance regularization to overcome the singularity.Besides,it applies a soft-thresholding technique to reduce random noise and improve the testing power.Then we use matlab to do Monte Carlo simulation by generating random multivariate data and applies the data to the new method as well as the statistic which based on the Hotelling T^2.The comparative result shows that our statistic is better than the statistic based on the Hotelling T^2 in the testing power.Our method can be applied to fast monitoring changes in multi-parameter products,especially the products that is hard to get enough testing data,such as when the test is a destructive test or the test costs to much.
出处 《数理统计与管理》 CSSCI 北大核心 2015年第3期420-426,共7页 Journal of Applied Statistics and Management
基金 国家自然学科基金项目(70902070)
关键词 多元过程控制 软阈值技术 样本协方差规范化 单样本 平均运行长度 multivariate process control soft-thresholding technique sample covariance regularization one-sample average run length
  • 相关文献

参考文献13

  • 1薛丽.可变抽样区间同时监控均值标准差的EWMA控制图[J].数理统计与管理,2015,34(1):93-99. 被引量:6
  • 2李根,邹国华,张新雨.高维模型选择方法综述[J].数理统计与管理,2012,31(4):640-658. 被引量:35
  • 3耿修林.多质量特性多影响因素的因果关系诊断[J].数理统计与管理,2012,31(1):142-148. 被引量:2
  • 4Yanfeng Shen,Zhengyan Lin,Jun Zhu.Shrinkage-based regularization tests for high-dimensional data with application to gene set analysis[J]. Computational Statistics and Data Analysis . 2011 (7) 被引量:1
  • 5Jianqing Fan.Test of significance based on wavelet thresholding and Neyman’s truncation. Journal of the American Statistical Association . 1996 被引量:1
  • 6Lowry C A,Woodall W H,Champ C W,et al.A multivariate exponentially weighted moving average control chart. Technometrics . 1992 被引量:1
  • 7Mason, Robert L.,Young, John C.Improving the sensitivity of the T<sup>2</sup> statistic in multivariate process control. Journal of Environmental Quality . 1999 被引量:1
  • 8Sullivan, Joe H.,Woodall, William H.Comparison of multivariate control charts for individual observations. Journal of Environmental Quality . 1996 被引量:1
  • 9Sch?fer Juliane,Strimmer Korbinian.A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical applications in genetics and molecular biology . 2006 被引量:1
  • 10Crosier,Ronald B.Multivariate Generalizations of Cumulative Sum Quality-Control Schemes. Technometrics . 1988 被引量:1

二级参考文献71

共引文献40

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部