摘要
设M=ABCD为复数域上的矩阵,其中A为m×n矩阵,rankA=r≤min(m,n),B为m×r1矩阵,rankB=r1,C为r2×n矩阵,rankC=r2,m+r2=n+r1.本文研究了矩阵M的奇异性,给出了M为非奇异矩阵的充分必要条件,也给出了M-1=A+C+B+D+的充分必要条件.
Let M=A B C D,where A is a m×n matrix with rank r≤min (m,n),B is a m×r 1matrix with rank r 1 and C is a r 2×n matrix with rank r 2,m+r 2=n+r 1.In this paper,we give the necessary and sufficient conditions for nonsigularity of M.Besides, we also give the necessary and sufficient Conditions for M -1 =A + C + B + D +.
出处
《宝鸡文理学院学报(自然科学版)》
CAS
1999年第1期6-11,共6页
Journal of Baoji University of Arts and Sciences(Natural Science Edition)
关键词
分块矩阵
非奇异矩阵
奇异性
充要条件
矩阵
Partitioned matrix
Nonsingular matrix
Necessary and sufficient conditions