期刊文献+

高维混料模型的LASSO变量选择 被引量:8

LASSO Variable Selection for High-dimensional Mixture Model
原文传递
导出
摘要 变量选择是统计建模中重要的问题。当试验数据维数很高时,传统变量选择方法的应用受到了很多制约。本文以高维混料试验为基础,比较了AIC准则和LASSO在变量选择问题上的优良性。通过实例验证,LASSO可以快速且准确地对高维混料模型中的变量进行筛选,从而得出最优模型,达到降低成本、提高利益的目的。 Variable selection is an important issue in Statistical Modeling. Traditional variable selection method is difficult in dealing with the increasing dimension of experimental data. In this paper, based on the high-dimensional mixture experimental design, the optimality of the AIC criterion and LASSO on variable selection are compared. As showed by examples, LASSO can quickly and accurately filter the variables for the high-dimensional mixture model selection process. The optimal model got by the process are powerful in reducing cost and increasing benefit.
作者 冷薇 李俊鹏 张崇岐 LENG Wei;LI Jun-peng;ZHANG Chong-qi(School of Economics and Statistics Guangzhou University,Guangdong Guangzhou 510006,China)
出处 《数理统计与管理》 CSSCI 北大核心 2019年第1期81-86,共6页 Journal of Applied Statistics and Management
基金 国家自然科学基金(11671104) 广州大学研究生"基础创新"项目(2017GDJC-M49)
关键词 高维混料模型 变量选择 LASSO high-dimensional mixture model variable selection LASSO
  • 相关文献

参考文献7

二级参考文献95

  • 1周婉枝.多元C_p统计量[J].广西大学学报(自然科学版),1995,20(3):291-294. 被引量:1
  • 2王大荣,张忠占.联合广义线性模型中的变量选择[J].统计研究,2007,24(4):37-40. 被引量:2
  • 3张崇岐,赵娜.最优混料试验轴设计[J].工程数学学报,2007,24(3):463-468. 被引量:4
  • 4Fan J, Li R. Statistical challenges with high dimensionality: Feature selection in knowledge discovery [A]. In: Sanz-Sole M, Soria J, Varona J L, et al, eds. Proceedings of the International Congress of Mathematicians [C]. Zurich: European Mathematical Society, 2006, 3: 595-622. 被引量:1
  • 5Claeskens G, Hjort N L. Model Selection and Model Averaging [M]. Cambridge University Press, 2008. 被引量:1
  • 6Hocking R R. The analysis and selection of variables in linear regression [J]. Biometrics, 1976, 32: 1-49. 被引量:1
  • 7Guyon I, Elisseeff A. An introduction to variable and feature selection [J]. Journal of Machine Learn- ing Research, 2003, 3: 1157-1182. 被引量:1
  • 8Li X, Xu R. High-Dimensional Data Analysis in Cancer Research [M]. Springer, 2009. 被引量:1
  • 9Hesterberg T, Choi N H, Meier L, Fraley C. Least angle and 11 penalized regression: A review [Jl. Statistics Surveys, 2008, 2: 61-93. 被引量:1
  • 10Fan J, Lv J. A selective overview of variable selection in high dimensional feature space [J]. Statistica Sinica, 2010, 20: 101-148. 被引量:1

共引文献122

同被引文献43

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部