摘要
设n/(n+ε) <P≤1,本文证明了Littlewood-Paley算子与BMO函数构成的交换子的(H_b^p,L^p)-型有界性和(H_b^(p.∞),L^(p,∞))-型有界性.
Let n/n+ε< p≤1, in this paper, the (H_b^p, Lp)-type and (H_b^(p,∞), L^(P,∞)-type bound-edness for the commutators associated with the Littlewood-Paley operators and b∈ BMO(Rn) are obtained, where H_b^p and _b^p,∞are, respectively, the variants of the standard Hardy spaces and weak Hardy spaces.
出处
《数学进展》
CSCD
北大核心
2003年第4期473-480,共8页
Advances in Mathematics(China)
基金
Supported by the National 973 Project of China