摘要
用μΩ表示Marcinkiewicz积分,μΩ,b表示μΩ与函数b∈BMO(R^n)生成的交换子.本文证明了交换子μΩ,b是从Herz型Hardy空间H■_q^(n(1-(1/q)),p)(R^n)到弱Herz空间W■_q^(n(1-(1/q)),p)(R^n)有界的,其中0<p≤1,1<q<∞.
Let μΩ be the Marcinkiewicz integral and μΩ,b the commutator generalized by μΩ and b ∈ BMO(R^n). It is proved that μΩ,b is bounded from the Herz-type Hardy space HKq^n(1-1/q),p (R^n) into the weak Herz space WKq^n(1-~1/q),p(R^n) when 0 〈p ≤ 1 and 1 〈 q 〈∞.
出处
《数学进展》
CSCD
北大核心
2007年第1期108-114,共7页
Advances in Mathematics(China)
基金
Supported by the Qingnian Foundation of Lishui University(QN 03003).