期刊文献+

基于增量学习支持向量机的音频例子识别与检索 被引量:7

Audio Clip Recognition and Retrieval Based on Incremental Learning with Support Vector Machine
下载PDF
导出
摘要 音频例子识别与检索的主要任务是构造一个良好的分类学习机 ,而在构造过程中 ,从含有冗余样本的训练库中选择最佳训练例子、节省学习机的训练时间是构造分类机面临的一个挑战 ,尤其是对含有大样本训练库音频例子的识别 由于支持向量是支持向量机中的关键例子 ,提出了增量学习支持向量机训练算法 在这个算法中 ,训练样本被分成训练子库按批次进行训练 ,每次训练中 ,只保留支持向量 ,去除非支持向量 与普通和减量支持向量机对比的实验表明 ,算法在显著减少训练时间前提下 。 The primary task of audio clip recognition and retrieval is to construct a well performance classifier learning machine How to choose informative training instance from redundant training database and reduce training time of classifier machine is a challenge during the construction of classifier machine, especially for audio clip recognition with large size training database Since support vector is the key instance in support vector machine (SVM), an algorithm to train SVM with incremental learning is proposed In this algorithm, training database is segmented into sub databases and each sub database is trained in batch During each training process, only support vector is reserved for future training and non support vector is discarded Compared with traditional and decremental SVMs, this training algorithm obviously reduces training time and obtains high correct rates of recognition and retrieval
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第7期950-955,共6页 Journal of Computer Research and Development
基金 国家自然科学基金 ( 60 2 72 0 3 1) 浙江省自然科学基金 (ZD0 2 12 ) 教育部博士点基金 ( 2 0 0 10 3 3 5 0 49) 国家"十五"重大科技攻关项目 ( 2 0 0 1BA10 1A0 7 0 3 ) 浙江省科技计划重点科研项目 ( 2 0 0 3C2 10 10 )
关键词 增量学习 支持向量机 音频例子识别检索 分类学习机 incremental learning support vector machine audio clip recognition and retrieval
  • 相关文献

参考文献14

  • 1庄越挺,毛祎,吴飞,潘云鹤.基于隐马尔可夫链的广播新闻分割分类[J].计算机研究与发展,2002,39(9):1057-1063. 被引量:7
  • 2庄越挺,刘骏伟,吴飞,潘云鹤,张引.基于支持向量机的视频字幕自动定位与提取[J].计算机辅助设计与图形学学报,2002,14(8):750-753. 被引量:38
  • 3Jonathan T Foote. An overview of audio information retrieval.Multimedia Systems, 1999, 7(1). 2--11. 被引量:1
  • 4John Saunders. Real-time discrimination of broadcast speech/music Int'l Conf Acoustic, Speech, and Signal Processing(ICASSP'96), Atlanta, 1996. 被引量:1
  • 5E Scheirer, M Slaney. Construction and evaluation of a robust multifeature music/speech discriminator. Int' l Conf Acoustic,Speech, and Signal Processing (ICASSP' 97), Munich: IEEE Press, 1997. 1331--1334. 被引量:1
  • 6M Spina, V Zue. Automatic transcription of general audio data:Preliminary analyses. Int'l Conf on Spoken Language Processing,Philadelphia, 1996. 被引量:1
  • 7J T Foote. A similarity measure for automatic audio classification.AAAI 1997 Spring Symposium on Intelligent Integration and Use of Text, Image, Video, and Audio Corpora, Palo Alto, 1997. 被引量:1
  • 8Savitha Srinivasan, Dragutin Petkovic, Dulce Ponce.leon. Towards robust features for classifying audio in the cuevideo system. ACM Int'l Multimedia Conf 99, San Diego, 1999. 被引量:1
  • 9Stan Z Li, GuoDong Guo. Content-based audio classification and retrieval using SVM leaming. The 1st IERE Pacific-Rim Conf on Multimedia, University of Sydney, Australia, 2000. 被引量:1
  • 10V Vapnik. The Nature of Statistical Learning Theory. New York: Springer, 1995. 被引量:1

二级参考文献24

  • 1[1]Y Wang, Z Liu, J Huang. Multimedia content analysis using audio and visual information[J]. IEEE Signal Processing Magazine, 2000, 17(6):12~36 被引量:1
  • 2[2]R Lienhart, F Stuber. Automatic text recognition in digital videos[A]. In: Proceedings of ACM Multimedia, Boston, 1996.11~20 被引量:1
  • 3[3]Zhong Yu, Zhang Hongjiang, Jain Anil K. Automatic caption localization in compressed video[J]. Pattern Analysis and Machine Intelligence, 2000, 22(4):385~392 被引量:1
  • 4[4]V Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995 被引量:1
  • 5[5]M Schmidt. Identifying speaker with support vector networks[A]. In: Proceedings of Interface'96, Sydney, 1996 被引量:1
  • 6[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features[A]. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998.137~142 被引量:1
  • 7[7]Yuan Qi. Learning algorithms for video and audio processing: Independent component analysis and support vector machine based approaches[R].College Park: University of Maryland at College Park, LAMP-TR-056(CAR-TR-951), 2000 被引量:1
  • 8[8]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: Proceedings of Computer Vision and Pattern Recognition, Puerto Rico, 1997.130~136 被引量:1
  • 9[9]C J C Burges. A tutorial on support vector machines for pattern recognition[J]. Data Mining, and Knowledge Discovery, 1998, 2(2):121~167 被引量:1
  • 10[10]T M Cover. Geometrical and statistical properties of systems and linear inequalities with applications in pattern recognition[J]. IEEE Transactions on Electronic Computers, 1965, 14(3):326~334 被引量:1

共引文献42

同被引文献86

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部