期刊文献+

基于支持向量机的散乱数据拟合 被引量:5

Large Scattered Data Set Fitting by Support Vector Machine
下载PDF
导出
摘要 文章提出了一种有效的大规模散乱点拟合方法,它是采用最小均方支持向量机局部拟合对Shepard插值方法进行改进。支持向量机基于结构风险最小化准则,在数据拟合方面具有较好的泛化能力,而改进的Shepard法能有效拟合大规模样本点。实验结果表明该算法对大规模散乱数据点具有较好的拟合性能。 An efficient method for fitting large scattered data set is presented.h represents a improvement of the Shepard's method based on the local use of least square support vector machine.Support vector machine is designed to minimize the structural risk,and the generalization performance suits for function approximation.Modified Shepard's method can efficiently interpolate large data set.The proposed algorithm has been implemented and some results confirm its efficiency.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第28期84-87,共4页 Computer Engineering and Applications
关键词 散乱数据集 支持向量机 改进Shepard法 scattered data set,support vector machine,modified Shepard's method
  • 相关文献

参考文献19

  • 1王国夫,孙尧,张海勋,杨传安.基于节点插入原理的大规模散乱数据插值[J].哈尔滨工程大学学报,2001,22(1):45-48. 被引量:8
  • 2张伟强,唐泽圣.大规模散乱数据的层次B-样条曲面表示[J].计算机学报,1999,22(10):1059-1064. 被引量:10
  • 3孙家广等编著..计算机图形学 第3版[M].北京:清华大学出版社,1998:595.
  • 4Renka R J.Algorithm 660:QSHEP2D:quadratic Shepard method for bivariate interpolation of scattered data[J].ACM Transactions on Mathematical Software, 1988; 14:149~150. 被引量:1
  • 5Renka R J.Algorithm 661 :QSHEP3D:quadratic Shepard method for trivariate interpolation of scattered data[J].ACM Transactions on Mathematical Software, 1988; 14:151~152. 被引量:1
  • 6Renka R J.Algorithm 790:CSHEP2D:Cubic Shepard Method for Bivariate Interpolation of Scattered Data[J].ACM Transactions on Mathematical Software, 1999 ;25 ( 1 ): 70~73. 被引量:1
  • 7Renka R J.Algorithm 791 :TSHEP2D:Cosine Series Shepard Method for Bivariate Interpolation of Scattered Data[J].ACM Transactions on Mathematical Software, 1999; 25 ( 1 ): 74~77. 被引量:1
  • 8Renka R J.Algorithm 792:accuracy tests of ACM algorithms for interpolation of scattered data in the plane[J],ACM Transactions on Mathematical Software, 1999; 25 ( 1 ): 78~94. 被引量:1
  • 9Lazzaro D,Laura B M.Radial basis functions for the multivariate interpolation of large scattered data sets[J].Journal of Computational and Applied Mathematics,2002;140:521~536. 被引量:1
  • 10Vapnik V.The Nature of Statistical Learning Theory[M].New York: Springer, 1995. 被引量:1

二级参考文献20

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995 被引量:1
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297 被引量:1
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136 被引量:1
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998 被引量:1
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998 被引量:1
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953 被引量:1
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31 被引量:1
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997 被引量:1
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285 被引量:1
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184 被引量:1

共引文献158

同被引文献54

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部