期刊文献+

MC-CDMA uplink的一种新型多用户检测技术

An Uplink MC-CDMA Multi-user Detector Based on Incremental Support Vector Machine
下载PDF
导出
摘要 由于多载波传输数据和基于快速傅里叶变换(Fast Fourier Transform,FFT)的矩形窗截取,MC-CDMA(Multi-Carrier CDMA)系统对频率偏差十分敏感,同时上行链路信号的异步性和信道的非线性,令MC-CDMA从单载波扩频系统继承来的线性多用户检测手段和分集合并技术变得不再有效,信道估计困难而不准确。为了在这种条件下提高信号检测的性能,提出了基于支撑向量机增量学习算法(Incremental Support Vector Machine,ISVM)的MC-CDMA上行链路多用户检测器。该检测器在标准支撑向量机(Support Vector Machine,SVM)的基础上舍弃历史样本,减少不必要的训练,同时合理地处理了新增样本和原支撑向量机分界面的关系,保留了强大的非线性分类力。通过仿真实验,与常用的检测技术以及最佳检测曲线比较,表明该检测器能很好地逼近最佳检测器。 An uplink Multi-Carrier CDMA(MC-CDMA) multi-user detector based on Incremental Support Vector Machine(ISVM) is proposed in this paper. The proposed detector minishes training set by discarding history samples and maintains strong ability of nonlinear classification with more proper incremental learning methods based on reasonable analysis of relationship between new training samples and old Support Vector Machine(SVM)'s hyperplane. Comparison curves are drawn between the proposed detector and traditional detection technologies, and simulation results show that the proposed detector based on ISVM can well approach the optimum detection performance.
作者 何吟 陈晓光
出处 《信息与电子工程》 2006年第6期421-426,共6页 information and electronic engineering
关键词 增量学习算法 支撑向量机 MC—CDMA 多用户检测 incremental learning SVM MC-CDMA multi-user detection
  • 相关文献

参考文献4

二级参考文献18

  • 1张贤达 保铮.通讯信号处理[M].北京:国防工业出版社,2000.420-482. 被引量:5
  • 2Verdu S.Multiuser Detection[M].Cambridge: Cambridge University Press,1998. 被引量:1
  • 3Wang Yonggang,Li Jingshe,Jiao Licheng.A Novel Multiuser Detection Using the Stochastic Hopfield Network in CDMA Communication System[A].IEEE International Conference on Communications,Circuits and Systems and West Sino Expositions[C].New York: IEEE,2002.1132-1135. 被引量:1
  • 4焦李成 马海波 刘芳.多用户检测的独立分量分析算法[J].西安电子科技大学学报,2001,28(12):91-95. 被引量:1
  • 5Chen H H,Fan C X,Lu W W.Chinas Perspectives on 3G Mobile Communication and Beyond: TD-SCDMA Technology[J].IEEE Wireless Communication,2002,9(2): 48-59. 被引量:1
  • 6Vapnik V.The Nature of Statistical Learning Theory[M].New York: Springer-Verlag,1995. 被引量:1
  • 7Chen S,Samingan A K,Hanzo L.Support Vector Machine Multiuser Receiver for DS-CDMA Signals in Multipath Channels[J].IEEE Trans on Neural Networks,2000,12(3): 604-611. 被引量:1
  • 8XIAO Rong,WANG Ji-cheng,ZHANG Fa-yan.An approach to incremental SVM learning algorithm[C]//ICTAI2000.Vancouver,British Columbia,Canada:IEEE,2000:268-273. 被引量:1
  • 9SYED N,LIU H,SUNG K K.Incremental learning with support vector machines[C]//IJCAI 1999.Stockholm:Morgan kaufmann publishers,1999:352-356. 被引量:1
  • 10]KRISTIN P B,ERIN J B.Geometry in learning[R].New York:Rennselaer Polytechnic Institute,1996. 被引量:1

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部