期刊文献+

各仓室均有常数输入的SEI流行病模型的全局分析 被引量:13

Global Analysis of SEI Epidemic Model with the Constant Inflows of Different Compartments
下载PDF
导出
摘要 研究了各仓室均有常数输入且接触率为种群密度制约的SEI流行病模型.如果输入的新成员都是易感的,模型存在强阈值现象,阈值参数即其基本再生数,它决定了疾病的绝灭与流行也决定了模型的全局性态.如果输入的新成员中有被感染的,疾病不会绝灭.利用三维竞争系统的Poincar啨 Bendixson性质排除了周期解存在的可能性,从而证明了惟一的地方病平衡点是全局渐近稳定的. An SEI epidemic model with the constant inflows of susceptible, exposed and infective compartments is constructed and analyzed,whose incidence is poplation size dependent. When new members of inflows are all susceptible, the model admits a sharp threshold phenomena. The threshold parameter is considered as the basic reproduction number, which determines the outcome of the disease and the global dynamics of the model. If three epidemic compartments are all with the constant inflow, there is no diseasefree equilibrium, but the model admits a unique endemic equilibium which is globally asymptotically stable. With the help of the PoincaréBendixson property of competitive system, this result is proved by ruling out periodic trajectories.
作者 张娟 马知恩
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第6期653-656,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目 (1 9971 0 6 6 ).
关键词 SEI模型 常数输入 种群规模制约接触率 竞争系统 全局渐近稳定性 SEI model constant inflow population size dependent contact rate competitive system global asymptotical stability
  • 相关文献

参考文献7

  • 1Thieme H R, Castillo-Chavez C. On the role of variable infectivity in the dynamics of the Human Immunodeficiency virus epidemic [ A]. Castillo-Chavez C.Mathematical and Statistical Approaches to AIDS Epidemiology [C]. New York: Springer, 1989. 被引量:1
  • 2Anderson R M. Transmission dynamics and control of infectious diseases [A]. Anderson R M, May M R.Population Biology of Infectious Diseases, Life Sciences Research Report 25 [C]. Berlin: Springer,1982. 被引量:1
  • 3Heesterbeek J A P, Metz J A J. The saturating contact rate in marriage and epidemic models [J]. J Math Biol, 1993, 31:529-539. 被引量:1
  • 4Hale J K. Ordinary differential equations [M]. New York: Wiley-Interscience, 1969. 被引量:1
  • 5Hofbauer J, So J W H. Uniform persistence and repellors for maps [J]. Proc Amer Math Soc, 1989,107:1137-1142. 被引量:1
  • 6Muldowney J S. Compound matrices and ordinary differential equations [J]. Rocky Mount J Math, 1990,20 : 857-872. 被引量:1
  • 7Esteva L, Vargas C. Analysis of a dengue disease transmission model [J]. Math Biosci, 1998, 150:131-151. 被引量:1

同被引文献56

引证文献13

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部