期刊文献+

无标度网络上具有时滞的SIR计算机病毒传播模型研究 被引量:2

A Study of SIR Spreading Model of Computer Virus with Time Delay on Scale-Free Network
下载PDF
导出
摘要 提出一类具有非线性传染率和时滞特性的计算机病毒传播模型,得到该病毒传播的基本再生数,证明当基本再生数小于1时,病毒将逐渐消亡;当基本再生数大于1时,病毒将持续存在.数值仿真验证所得结论是正确的. In this paper,a novel epidemic model of computer virus with time delay and nonlinear infectivity is proposed. The basic reproductive number for the model is presented. We prove that the viruses will die out when the basic reproductive number is less than the unity, whereas the permanence of the viruses is shown if the basic reproductive number exceeds the unity.Numerical simulations confirm the analytical results.
出处 《军械工程学院学报》 2015年第1期74-78,共5页 Journal of Ordnance Engineering College
关键词 无标度网络 时滞 非线性传染率 基本再生数 scale-free network time delay nonlinear infectivity basic reproductive number
  • 相关文献

参考文献9

二级参考文献15

  • 1李光正,史定华.复杂网络上SIRS类疾病传播行为分析[J].自然科学进展,2006,16(4):508-512. 被引量:46
  • 2张海峰,傅新楚.含有免疫作用的SIR传染病模型在复杂网络上的动力学行为[J].上海大学学报(自然科学版),2007,13(2):189-192. 被引量:21
  • 3Pastor-Satorras R,Vespignani A.Epidemic sprea-ding in scale-free Networks[J].Physical Review Let-ters,2001,86:3200-3203. 被引量:1
  • 4Newman M E J.Spread of epidemic disease on net-works[J].Physical Review:E,2002,66:016128. 被引量:1
  • 5Pastor-Satorras R,Vespignani A.Epidemic dynamicsand endemic states in complex networks[J].PhysicalReview:E,2001,63:066117. 被引量:1
  • 6David J D E,Pejman R,Benjamin M B,et al.A sim-ple model for complex dynamical transitions in epi-demics[J].Science,2002,287:667-670. 被引量:1
  • 7Moreno Y,Nekovee M,Pacheco A F.Dynamics ofrumor spreading in complex networks[J].PhysicalReview:E,2004,69:066130. 被引量:1
  • 8Chen Jiancong,Zhang Huiling,Guan Zhihong,et al.Epidemic spreading on networks with overlappingcommunity structure[J].Physica:A,2012,391:1848-1854. 被引量:1
  • 9Zhang Huiling,Guan Zhihong,Li Tao,et al.A sto-chastic SIR epidemic on scale-free network with com-munity structure[J].Physica:A,2013,392(4):974-98. 被引量:1
  • 10Liu Junli,Zhang Tailei.Epidemic spreading of anSEIRS model in scale-free networks[J].CommunNonlinear Sci Numer Simulat,2011,16:3375-3384. 被引量:1

共引文献69

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部