摘要
结合人工智能技术和机器人技术,研究具备一定自主决策和学习能力的机器人操作技能学习系统,已逐渐成为机器人研究领域的重要分支.本文介绍了机器人操作技能学习的主要方法及最新的研究成果.依据对训练数据的使用方式将机器人操作技能学习方法分为基于强化学习的方法、基于示教学习的方法和基于小数据学习的方法,并基于此对近些年的研究成果进行了综述和分析,最后列举了机器人操作技能学习的未来发展方向.
Designing a robot manipulation skill learning system with autonomous reasoning and learning ability has gradually become an important branch of robotics research field in combination with artificial intelligence and robotics technology. In this paper, the main methods and the latest research results of robot manipulation skills learning methods are introduced. We divide the learning methods into three categories, namely reinforcement learning approach, demonstration learning approach, and few data learning approach. Achievements of the robot manipulation skills learning areas based on these methods are discussed thoroughly. Finally, the future research directions are listed.
作者
刘乃军
鲁涛
蔡莹皓
王硕
LIU Nai-Jun;LU Tao;CAI Ying-Hao;WANG Shuo(State Key Laboratory of Management and Control for Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100190;Center for Excellence in Brain Science and Intelligence Technology,Chinese Academy of Sciences,Beijing 100190)
出处
《自动化学报》
EI
CSCD
北大核心
2019年第3期458-470,共13页
Acta Automatica Sinica
基金
国家自然科学基金(U1713222
61773378
61703401)
北京市科技计划(2171100000817009)资助~~
关键词
机器人
操作技能
强化学习
示教学习
小数据学习
Robots
manipulation skills
reinforcement learning
imitation learning
few data learning