期刊文献+

基于循环抑制CPG模型控制的蛇形机器人三维运动 被引量:15

3-dimensional Locomotion of a Snake-like Robot Controlled by Cyclic Inhibitory CPG Model
下载PDF
导出
摘要 具有三维运动能力和独特的节律运动方式,使生物蛇能在复杂的地形环境中生存.大多数动物节律运动是由中央模式发生器(Centralpatterngenerator,CPG)控制的.以此为理论依据,首次以循环抑制建模机理构建蛇形机器人组合关节运动控制的CPG模型.证明该模型是节律输出型CPG中微分方程维数最少的.采用单向激励方式连接该类CPG构建蛇形机器人三维运动神经网络控制体系,给出该CPG网络产生振荡输出的必要条件.应用蛇形机器人动力学模型仿真得到控制三维运动的CPG神经网络参数,利用该CPG网络的输出使“勘查者”成功实现三维运动.该结果为建立未探明的生物蛇神经网络模型提供了一种全新的方法. With 3D movement's ability and rhythmic locomotion mode, a nature snake makes itself survive in rugged terrains. The rhythmic activities of most creatures are generated by the CPG (Central Pattern Generator). Based on this fact, the sustained-type neuron has been adopted to construct a cyclic inhibitory CPG model for a snake-like robot whose joints are perpendicularly connected in series. The cyclic inhibitory CPG was proven to be able to generate rhythmic output with the least number of differential equations. The neuron network organized by the CPGs connected in line with unilateral excitation has been introduced to control the 3D locomotion of the snake-like robot, and then the necessary condition is also presented for the CPG neuron network to sustain a rhythmic output. By implementing this control architecture to a simulator of a snake-like robot, preliminary parameters of the CPG neuron network for its 3D locomotion are obtained. Moreover, it is known that "Perambulator" can successfully exhibit 3D locomotion by using the output of the proposed CPG network. The obtained results have also provided a brand-new approach to understand the unknown neuron network of nature snake.
出处 《自动化学报》 EI CSCD 北大核心 2007年第1期54-58,共5页 Acta Automatica Sinica
基金 国家自然科学基金(60375029) 国家"863"计划(2001AA422360) 日本学术振兴会科学研究补助金"JSPS"(15360129)资助~~
关键词 蛇形机器人 三维运动 循环抑制 中央模式发生器(CPG) 稳定性分析 Snake-like robot, 3-dimensional locomotion, cyclic inhibition, central pattern generator (CPG), stability analysis
  • 相关文献

参考文献12

  • 1Hirose S. Biologically Inspired Robots-Snake-Like Locomotor and Manipulator. Oxford: Oxford University Press,1993. 1-13 被引量:1
  • 2Mori M, Hirose S, Yamada H. Design and development ofactive cord mechanism "ACM-R3" and its 3-dlmensional locomotion control. Journal of the Robotics Society of Japan,2005, 23 (7): 120-131(in Japanese) 被引量:1
  • 3Paap K, Dehlwisch M, Klaassen B. GMD-Snake: a Semi-Autonomous Snake-Like Robot. In: 3rd International Symposium on Distributed Autonomous Robot Systems (DARS96). Saitama City, Japan. IEEE, 1996. 29-31 被引量:1
  • 4Ma S G, Lan G P, Tanabe Y, Sasaki R, Inoue K. A serpentine robot based on 3 DOF coupled-driven joint. In:Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics (ROBIO 2004). 2004. 70-75 被引量:1
  • 5Wilson D M. The central nervous control of flight in a locust.Journal of Experimental Biology, 1961, 38:471-490 被引量:1
  • 6Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 1952, 117(4):500-544 被引量:1
  • 7Golubltsky M, Stewart I, Buono P L, Collins J J. A modular network for legged locomotion. Physica D, 1998, 115 (1):56-72 被引量:1
  • 8Matsuoka K. Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics,1987, 56 (5-6): 345-353 被引量:1
  • 9Kimura H, Fukuoka Y, Konaga K. Adaptive dynamic walking of a quadruped robot using a neural system model. Advanced Robotics, 2001, 15 (8): 859-878 被引量:1
  • 10Taga G, Yamaguchi Y, Shimizu H. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics, 1991, 65 (3): 147-159 被引量:1

同被引文献384

引证文献15

二级引证文献436

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部