期刊文献+

基于云边协同的计算机视觉推理机制 被引量:4

Cloud-edge collaboration based computer vision inference mechanism
下载PDF
导出
摘要 深度学习和云计算的普及推动了计算机视觉在各行业中的广泛应用。但集中化的云端推理服务存在带宽资源消耗大、图像数据隐私泄露、时效性难以满足等问题,难以充分满足计算机视觉在行业应用上的多样化应用需求。而通信网络的双吉比特升级将促进视觉算法云边算法深层次协同。对基于云边协同的计算机视觉推理机制开展研究。首先对近年主流的云侧和边缘侧计算机视觉推理模型的优劣势进行了分析和阐述,然后在此基础上对云边协同计算机视觉推理模型框架、部署机制等开展研究,详细讨论模型分布式推理模型分割策略,云边协同网络部署优化策略。最后通过数据协同、网络分区协同、业务功能协同3方面对云边协同深度推理未来的发展挑战进行了展望。 The popularity of deep learning and cloud computing has promoted the widespread application of computer vision in various industries.However,centralized cloud inference services have problems such as high bandwidth resource consumption,image data privacy leakage,and high latency.It is hard that satisfy demand which requires diversified computer vision application.The dual gigabit upgrade of the communication network will promote depth collaboration of computer vision cloud-edge algorithms.Aiming to study the computer vision inference mechanism based on cloud-edge collaboration.Firstly,the advantages and disadvantages of the mainstream cloud and edge computer vision inference models in recent years were analyzed and explained,and on this basis,research on the cloud-edge collaborative computer vision inference model framework and deployment mechanism was carried out,model distributed reasoning model segmentation strategy,cloud-side collaborative network deployment optimization strategy was discussed in detail.In the end,the challenge and prospect of deep learning cloud-edge collaboration inference in future was discussed through data collaboration,network partition collaboration,and business function collaboration.
作者 唐博恒 柴鑫刚 TANG Boheng;CHAI Xingang(China Mobile Research Institute,Beijing 100053,China)
出处 《电信科学》 2021年第5期72-81,共10页 Telecommunications Science
关键词 计算机视觉 深度学习 云边协同 computer vision deep learning cloud-edge collaboration
  • 相关文献

参考文献1

二级参考文献9

共引文献8

同被引文献36

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部