摘要
用数值积分和庞加莱映射方法对采用短轴承模型的刚性 Jeffcott转子轴承系统在较宽参数范围内进行稳定性研究。计算结果表明 ,系统存在倍周期分叉、概周期及混沌运动。用数值方法得到系统在某些参数域中的分叉图、响应曲线、频谱图、相图、轴心轨迹及庞加莱映射图 ,直观地显示了系统在某些参数域中的运行状态 ,并用分形几何理论对混沌系统的状态进行了判断。
The stability of a rigid Jeffcott rotor system based on a short-bearing model is studied in a relatively wide range of parameters using the Poincaré maps and numerical integral method.The results of calculation show that the period doubling bifurcation,quasi-periodic and chaos motion may occur.In some typical parameter regions the bifurcation diagrams,phase portrait,Poincaré maps and the frequency spectrums of the system are obtained from numerical integration,which intuitively demonstrate some operating conditions of the system.The fractal dimension concept is used to determine whether the system is in a state of chaos motion.Numerical analysis result in this paper provides the theoretical bases for qualitatively controlling the operating conditions of the system.
出处
《振动.测试与诊断》
EI
CSCD
2003年第1期33-36,共4页
Journal of Vibration,Measurement & Diagnosis
基金
江苏省博士后基金资助项目 (编号 :1660 6910 2 0 )
关键词
转子动力学
转子-轴承系统
稳定性
混沌
rotor dynamics rotor-bearing system stability bifurcation chaos