摘要
以转子动力学和非线性动力学理论为基础,针对非线性转子——轴承系统的具体特点,用数值积分和庞加莱映射方法对采用长轴承模型的刚性Jeffcott转子轴承系统在较宽参数范围内进行稳定性研究。计算结果表明,系统存在Hopf分叉及低周期运动。用数值方法得到系统在某些参数域中的分叉图、响应曲线、频谱图、相图、轴心轨迹及庞加莱映射图,直视显示了系统在某些参数域中的运行状态;数值分析结果为该类转子─—轴承系统的设计和安全运行提供理论参考。
In allusion to the characteristics of a nonlinear rotor -bearing system, the bifurcation of a rigidJeffcott rotor system using short-bearing model is study in a relatively wide parameter range based on rotordynamics and noalinear dynamics theory with the Poincare mape and numerical integral method in this paper.The result of calculation shows that may undergo the Hopf bifurcation and quasi-periodic motions.In sometypical parameter regions the bifurcation diagrams,the time histories,the shaft centerline orbit,phase portraitthe Poincare maps and the frequency spectrums of the system are acquired with numerical integral method. Theydemonstrate some motion state of the system.The analysis result of this paper provides the theoretical referrence for desighing and safely operating of this system.
出处
《汽轮机技术》
EI
北大核心
1999年第6期355-357,共3页
Turbine Technology
基金
国家自然科学基金!19990510