摘要
为了研究薄壁箱梁的动力反应特性,考虑了剪力滞后和剪切变形效应的影响,利用能量变分原理建立了矩形截面箱梁动力反应关于w(x,t),u(x,t)和θ(x,t)的控制微分方程和自然边界条件。据此对薄壁箱梁的动力反应特性进行了研究,获得了相应广义位移的闭合解,揭示了箱形梁桥动力反应的规律。算例中,本文解析解与有限元数值解作了比较,结果说明了本文动力分析方法的有效性。
In order to study dynamic characteristics of a thin-walled box girder, considering the shear deformation and shear lag effects,the energy variation principle was used to establish the governing differential equations and the corresponding natural boundary conditions about the three generalized dynamic displacement functions w(x,t),u(x,t),θ(x,t).The closed form solutions to the generalized displacement functions were obtained which discovered the dynamic law of the thin-walled box girder.An example is analyzed to compare the finite shell element solutions with the analytical solutions,the proposed approach is testified.
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2011年第2期198-201,266-267,共4页
Journal of Vibration,Measurement & Diagnosis
基金
国家自然科学基金资助项目(编号:50578054)
关键词
薄壁箱梁
剪力滞后
动力反应
能量变分原理
thin-walled box girder shear lag effect dynamic response energy-variation principle