期刊文献+

基于双向LSTM的Seq2Seq模型在加油站时序数据异常检测中的应用 被引量:15

Abnormal time series data detection of gas station by Seq2Seq model based on bidirectional long short-term memory
下载PDF
导出
摘要 加油时序数据包含加油行为的多维信息,但是指定加油站点数据较为稀疏,现有成熟的数据异常检测算法存在挖掘较多假性异常点以及遗漏较多真实异常点的缺陷,并不适用于挖掘加油站时序数据。提出一种基于深度学习的异常检测方法识别加油异常车辆,首先通过自动编码器对加油站点采集到的相关数据进行特征提取,然后采用嵌入双向长短期记忆(Bi-LSTM)的Seq2Seq模型对加油行为进行预测,最后通过比较预测值和原始值来定义异常点的阈值。通过在加油数据集以及信用卡欺诈数据集上的实验验证了该方法的有效性,并且相对于现有方法在加油数据集上均方根误差(RMSE)降低了21.1%,在信用卡欺诈数据集上检测异常的准确率提高了1.4%。因此,提出的模型可以有效应用于加油行为异常的车辆检测,从而提高加油站的管理和运营效率。 Time series data of gas station contains multi-dimensional information of fueling behavior,but the data of specific gas station are sparse.The existing abnormal data detection algorithms are not suitable for gas station time series data,because many pseudo outliers are mined and many real abnormal points are missed.To solve the problems,an abnormal detection method based on deep learning was proposed to detect vehicles with abnormal fueling.Firstly,feature extraction was performed on data collected from the gas station through an automatic encoder.Then,a deep learning model Seq2Seq with embedding Bidirectional Long Short-Term Memory(Bi-LSTM)was used to predict the fueling behavior.Finally,the threshold of outliers was defined by comparing the predicted value and the original value.The experiments on a fueling dataset and a credit card fraud dataset verify the effectiveness of the proposed method.Compared with the existing methods,the Root Mean Squared Error(RMSE)of the proposed method is decreased by 21.1%on the fueling dataset,and abnormal detection accuracy of the proposed method is improved by 1.4%on the credit card fraud dataset.Therefore,the proposed method can be applied to detect vehicles with abnormal fueling behavior,improving the management and operational efficiency of gas station.
作者 陶涛 周喜 马博 赵凡 TAO Tao;ZHOU Xi;MA Bo;ZHAO Fan(Xinjiang Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Urumqi Xinjiang 830011,China;University of Chinese Academy of Sciences,Beijing 100049,China;Xinjiang Laboratory of Minority Speech and Language Information Processing,Xinjiang Technical Institute of Physics and Chemistry,Xinjiang Urumqi 830011,China)
出处 《计算机应用》 CSCD 北大核心 2019年第3期924-929,共6页 journal of Computer Applications
基金 新疆维吾尔自治区高层次人才引进工程资助项目(Y639401201) 中国科学院西部之光项目(2016-QNXZ-A-3)~~
关键词 加油站时序数据 深度学习 Seq2Seq 双向长短期记忆 异常检测 gas station time-serise data deep learning Seq2Seq Bidirectional Long Short-Term Memory(Bi-LSTM) outlier detection
  • 相关文献

参考文献4

二级参考文献20

  • 1韩旭里.对称三对角矩阵带位移的QL方法和QR方法的收敛性[J].高等学校计算数学学报,1995,17(2):145-149. 被引量:3
  • 2陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18
  • 3International Telecommunication Union.World Telecommunication/ ICT development report 2010[EB/OL].[2013-10-12].http://www.itu.int/ITU-D/ict/publications/wtdr_10/index.html. 被引量:1
  • 4LEE J G,HAN J,LI X.Trajectory outlier detection:A partitionand-detect framework[C]// ICDE2008:Proceedings of the IEEE 24th International Conference on Data Engineering.Piscataway:IEEE,2008:140-149. 被引量:1
  • 5XIONG L,POCZOS B,SCHNEIDER J G,et al.Hierarchical probabilistic models for group anomaly detection[C]// AISTATS2011:Proceedings of the 4th International Conference on Artificial Intelligence and Statistics.Fort Lauderdale:Microtome Publishing,2011:789-797. 被引量:1
  • 6OLIVA J B.Anomaly detection and modeling of trajectories[D].Pittsburgh:Carnegie Mellon University,2012. 被引量:1
  • 7CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:Synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):326-331. 被引量:1
  • 8JAIN A,NANDAKUMAR K,ROSS A.Score normalization in multimodal biometric systems[J].Pattern Recognition,2005,38(12):2270-2285. 被引量:1
  • 9SCHOLKOPF B,SMOLA A,MULLER K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319. 被引量:1
  • 10BISHOP C M.Pattern recognition and machine learning[M].New York:Springer,2006. 被引量:1

共引文献58

同被引文献132

引证文献15

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部