期刊文献+

基于Walsh变换的时序数据相似性搜索 被引量:2

Similarity Search over Time Series Data Based on Walsh Transform
下载PDF
导出
摘要 针对时序数据相似性搜索面临的高维性问题,提出一种利用按沃尔什序数排列的离散沃尔什变换((DWHT)W)对时序数据进行维归约的方法。(DWHT)W是正交变换,变换矩阵简单,可以应用快速算法,对时序数据有更好的特征提取能力,用其索引时间序列数据在理论上具备非漏报性质。与基于离散傅里叶变换和基于离散沃尔什变换的对比实验表明,该方法可以获得更高的查询效率。 In order to solve the high-dimensional problem in similarity search over time series data, a new method of indexing and similarity searching in time series databases based on (DWHT)a is proposed in this paper. (DWHT)w is orthogonal and can use fast algorithm, and its transformation matrix is very simple. (DWHT)whas cxcellent performance in feature extraction and is used as an efficient dimensionality reduction technique to permit similarity search over large time series databases without false dismissals. Experimental resuhs demonstrate that performance of the proposed method is more efficient than that of DFT(Discrete Fourier Transform) and DWT(Discrete Wavelet Transform).
出处 《计算机工程》 CAS CSCD 北大核心 2011年第8期55-57,60,共4页 Computer Engineering
基金 广东省自然科学基金资助项目(06021484 9151009001000007) 广东省科技计划基金资助项目(2008A060201011)
关键词 时间序列 离散沃尔什变换 按沃尔什序数排列 范围查询 近邻查询 time series Discrete Walsh Transform(DWT) arranged according to Walsh sequence range query, nearest neighbor emery
  • 相关文献

参考文献8

二级参考文献30

  • 1Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases[J]. Journal of Knowledge and Information Systems, 2001, 3(3): 263-286. 被引量:1
  • 2Qu Yunyao, Wang Changzhou. Supporting Fast Search in Time Series for Movement Patterns in Multiples Scales[C]//Proc. of the 7th ACM CIKM Int'l Conference on Information and Knowledge Management. Bethesda, USA: [s. n.], 1998. 被引量:1
  • 3Keogh E, Pazzani M. An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback[C]//Proc. of the 4th Int'l Conference on Knowledge Discovery and Data Mining. New York, USA: [s. n.], 1998. 被引量:1
  • 4Park S, Lee D. Fast Retrieval of Similar Subsequences in Long Sequence Databases[C]//Proc. of the 3rd IEEE Knowledge and Data Engineering Exchange Workshop. Chicago, USA: [s. n.], 1999. 被引量:1
  • 5Perng C S, Wang Haixun. Landmarks: A New Model for Similarity-based Pattern in Time Series Databases[C]//Proc. of the 16th IEEE Int'l Conf. on Data Engineering. California, USA: [s. n.], 2000. 被引量:1
  • 6Pratt K B, Eugene F. Search for Patterns in Compressed Time Series[J]. International Journal of Image and Graphics, 2002, 2(1): 89-106. 被引量:1
  • 7Fu Tak-chung, Chung Fulai, Luk R, et al. Representing Financial Time Series Based on Data Point Importance[Z]. (2007-04-09). http://www.elsevier.com/locate/engappai. 被引量:1
  • 8Keogh E., Kasetty S.. On the need for time series data mining benchmarks: A survey and empirical demonstration. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002, 102~111. 被引量:1
  • 9Agrawal R., Faloutsos C.,Swami A.. Efficient similarity search in sequence databases. In: Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, IL, 1993, 69~84. 被引量:1
  • 10Seidl T., Kriegel H.P.. Optimal multi-step k-nearest neighbor search. In: Proceedings of the SIGMOD, Washington, 1998, 154~165. 被引量:1

共引文献45

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部