期刊文献+

基于Transformer重建的时序数据异常检测与关系提取 被引量:8

Anomaly Detection and Relation Extraction for Time Series Data Based on Transformer Reconstruction
下载PDF
导出
摘要 现有时序异常检测方法存在计算效率低和可解释性差的问题。考虑到Transformer模型在自然语言处理任务中表现出并行效率高且能够跨距离提取关系的优势,提出基于Transformer的掩膜时序建模方法。建立时序数据的并行无方向模型,并使用掩膜机制重建当前时间步,从而实现整段序列的重建。在存储系统数据集和NASA航天器数据集上的实验结果表明,与基于长短期记忆网络模型的检测方法相比,该方法可节约80.7%的计算时间,Range-based指标的F1得分达到0.582,并且其通过可视化关系矩阵可准确反映人为指令与异常的关系。 Existing Anomaly Detection(AD)methods for time series are faced with inefficient computation and poor interpretability.As the Transformer model shows the high parallel efficiency and the ability to extract relations regardless of distance in Natural Language Processing(NLP) tasks,this paper proposes a Transformer-based method,Masked Time Series Modeling(MTSM).The parallel model with no direction of time series data is constructed,and the mask strategy is used for the reconstruction of the current timestep and then the whole sequence.Experimental results on the storage system dataset and NASA spacecraft dataset show that the proposed method saves about80.7% time cost compared with the detection method based on Long-Short Term Memory(LSTM)model,and achieves0.582 in F1 score for Range-based index.Moreover,it can visualize the relation matrix to reflect the relation between anomalies and human instructions accurately.
作者 孟恒宇 李元祥 MENG Hengyu;LI Yuanxiang(School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第2期69-76,共8页 Computer Engineering
基金 国家自然科学基金“海洋环境动力学和数值模拟”(U1406404)。
关键词 时序数据 注意力机制 异常检测 关系提取 自动编码器 time series data attention mechanism Anomaly Detection(AD) relation extraction Auto-Encoder(AE)
  • 相关文献

参考文献6

二级参考文献41

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2黄书剑.时序数据上的数据挖掘.软件学报,2004,15(1):1-7. 被引量:5
  • 3杨一鸣,潘嵘,潘嘉林,杨强,李磊.时间序列分类问题的算法比较[J].计算机学报,2007,30(8):1259-1266. 被引量:40
  • 4Zakaria J,Mueen A,Keogh E.Clustering Time Series Using Unsupervised-Shapelets[C]//Proceedings of the12th IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Computer Society,2012:785-794. 被引量:1
  • 5Shajina T,Sivakumar P B.Human Gait Recognition and Classification Using Time Series Shapelets[C]//Proceedings of 2012 International Conference on Advances in Computing and Communications.Washington D.C.,USA:IEEE Press,2012:31-34. 被引量:1
  • 6Hartmann B,Link N.Gesture Recognition with Inertial Sensors and Optimized DTW Prototypes[C]//Proceedings of 2010 IEEE International Conference on Systems Man and Cybernetics.Washington D.C.,USA:IEEE Press,2010:2102-2109. 被引量:1
  • 7Xing Zhengzheng,Pei Jian,Yu P S,et al.Extracting Interpretable Features for Early Classification on Time Series[C]//Proceedings of the 11th SIAM International Conference on Data Mining.Philadelphia,USA:SIAM,2011:247-258. 被引量:1
  • 8Xing Zhengzheng,Pei Jian,Yu P S.Early Classification on Time Series[J].Knowledge and Information Systems,2012,31(1):105-127. 被引量:1
  • 9Ye Lexiang,Keogh E.Time Series Shapelets:A New Primitive for Data Mining[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2009:947-956. 被引量:1
  • 10Lines J,Davis L M,Hills J,et al.A Shapelet Transform for Time Series Classification[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:289-297. 被引量:1

共引文献68

同被引文献84

引证文献8

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部