期刊文献+

基于RANSAC的SIFT匹配阈值自适应估计 被引量:16

Estimate Threshold of SIFT Matching Adaptively Based on RANSAC
下载PDF
导出
摘要 针对基于欧氏距离比值作为图像尺度不变特征变换(SIFT)特征匹配相似性度量时,距离比阈值难以设置最优,且固定距离比阈值易引起误匹配或漏匹配等问题,引入随机抽样一致性(RANSAC)算法。该算法对SIFT匹配算法中的距离比阈值进行自适应优化,确定最佳的阈值,再利用双向匹配的方法剔除误匹配点。实验结果表明,针对不同的实验图像,所提算法都能自适应地求解出一个最优的比例阈值,使得匹配点数最多,同时具有较高的匹配正确率,经过双向匹配的策略优化后效果更好。 When matching images with scale invariant feature transform(SIFT),the Euclidean distance between feature vectors is used as the similarity measurement.But it was difficult to get the best distance ratio.Moreover,when the ratio was a constant,there would be some problems of error matching or matching leakage.Deal with the problem,the Random Sample Consensus(RANSAC)algorithm was introduced.Optimize the ratio in the process adaptively,and we can get the best threshold.SIFT-based image matching algorithm was analyzed,and a bi-direction matching was used to improve the accuracy of image matching and ensure the correctness of matching at maximum level.Finally,the experiment results show that the proposed methods can obtain an optimal threshold for different images.It can get the most matching points and a better matching rate,and by bi-direction matching,better results can be got.
出处 《计算机科学》 CSCD 北大核心 2017年第S1期157-160,共4页 Computer Science
基金 中科院青年创新促进(2016335) 国家自然科学基金(61501429)资助
关键词 尺度不变特征变换(SIFT) 随机抽样一致性(RANSAC) 自适应 匹配阈值 双向 SIFT RANSAC Adaptively Matching threshold Bi-direction
  • 相关文献

参考文献4

二级参考文献28

  • 1DAVID L G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 2Mikonaiczyk K, Sehmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1 615-1 630. 被引量:1
  • 3Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Trans. Pattern Analysis and Machine Intelli- gence, 2005, 27(10):1 615-1 630. 被引量:1
  • 4Ke Y, Sukthankar R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors[C]. Proceedings of IEEE Inter- national Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2004 : 511-517. 被引量:1
  • 5Bay H, Tuytelaars T, Gool L V. SURF: Speeded up Robust Features[C]. European Conference on Computer Vision, Springer- Verlag, Berlin, Heidelberg, 2006: 404-417. 被引量:1
  • 6Morel J M, Yu G S. ASIFT: A new framework for fully affine invariant image comparison[J]. Society for Industrial and applied Mathematics Journal on Image Sciences, 2009, 2(2): 438-469. 被引量:1
  • 7Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1) : 63-86. 被引量:1
  • 8Harris C.Stephens M.A combined corner and edge detector[A].Proc.of The Fourth Alvey Vision Conference[C],Manchestsr,UK,1988:147-151 被引量:1
  • 9Tomasi C,Kanade T.Detection and Tracking of Point Features[R].Carnegie Mellon University Technical Report CMU-CS-91-132,Pittsburgh,USA,Apr 1991 被引量:1
  • 10Lowe D G.Object recognition from local scale-invariant features[A].International Conference on Computer Vision[C],Corfu,Greece,Sep 1999:1150-1157 被引量:1

共引文献124

同被引文献126

引证文献16

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部