期刊文献+

结合小波变换与SIFT特征的工件图像匹配 被引量:3

Work-piece Image Matching by Wavelet Transform Combined with SIFT Characteristics
下载PDF
导出
摘要 小波变换具有数据压缩和检测信号局部突变的能力,而SIFT(尺度不变特征变换)对于平移、旋转、缩放和部分遮挡具有不变性。结合小波变换与SIFT特征提出了一种有效的工件图像匹配方法。该方法将原始图和模板图做小波分解以获得粗尺度的平滑图像;利用DoG算子对工件图像进行关键点检测,进而用欧氏距离对关键点进行特征匹配,最后对特征点进行错配消除。因此,两者优势的结合不但可以有效减少工件图像匹配的计算量,而且还可以减弱对于图像采集平台拍摄方位、拍摄距离、角度、光照条件等的依赖性,提高算法的实用性。 Wavelet transform provides itself with the capability of data compression and detecting local signal mutation, while scale invariant feature transform (SIFT) have the invariant ability of translation, rotation, scale and part of occlusion. An effective method of work-piece image matching is proposed by combining wavelet transform with SIFT. The smooth image of coarse scale can be obtained through wavelet decomposition for the original image and the model image by this method. The key points are detected using difference of gaussians (DoG) operator and are matched using Euclidean distance, then the points of error matching are eliminated. Therefore, combination of these two methods can effectively reduce computation cost for work-piece image matching and the dependence on image acquisitive position, direction, light condition etc, which improves the algorithm application.
出处 《机械科学与技术》 CSCD 北大核心 2009年第5期638-642,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(10872160) 陕西省教育厅省级重点实验室(机械制造装备重点实验室)重点科研计划项目(05JS29)资助
关键词 工件识别 图像匹配 SIFT 小波分解 work-piece recognition image matching scale invariant feature transform wavelet decomposition
  • 相关文献

参考文献16

  • 1Moravec H. Rover visual obstacle avoidance[ A]. In: International Joint Conference on Artificial Intelligence[ C ], Vancouver,Canada, 1981:785 -790 被引量:1
  • 2Harris C, Stephens M. A combined comer and edge detector [ A]. In : Fourth Alvey Vision Conference[ C], Manchester, UK, 1988:147 - 151 被引量:1
  • 3Kenney C S, Zuliani M, Manjunath B S. An axiomatic approach to conner detection [ A ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) [ C ],2005 被引量:1
  • 4Schmid C, Mohr R. Local gray value invariants for image retrieval[J]. IEEE Transcations on Pattern Analysis and Machine Intelligence, 1997,19 (5) :530- 534 被引量:1
  • 5Lindeberg T. Detecting salient blob-like image structures and their scales with a scale-space primal sketch:a method for focus-of-attention[ J]. International Journal of Computer Vision, 1993, 11 (3) :283 -318 被引量:1
  • 6Lowe D G. Distinctive image features from scale-invariant key-points [ J ]. International Journal of Computer Vision, 2004,60 (2) :91-110 被引量:1
  • 7Mikolajczyk K, Schmid C. An affine invariant interest point detector[ A ]. In. European Conference on Computer Vision (ECCV) [C] , Copenhagen, Denmark, 2002:128 - 142 被引量:1
  • 8李铁军,陈哲,王任享.尺度不变特征变换算法在图像配准中的应用[J].弹箭与制导学报,2008,28(2):183-185. 被引量:6
  • 9刘新红,赵建民,郑忠龙,朱信忠.基于SIFT算法的人脸描述与识别[J].计算机时代,2008(12):32-34. 被引量:2
  • 10骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44

二级参考文献47

共引文献109

同被引文献26

  • 1夏庆观,盛党红,路红,陈桂.零件图像特征提取和识别的研究[J].中国机械工程,2005,16(22):2031-2033. 被引量:16
  • 2朱心雄等著.自由曲线曲面造型技术[M].北京:科学出版社,2005. 被引量:2
  • 3贾云得编著.机器视觉[M].北京:科学出版社,2006. 被引量:2
  • 4Zhu H, Zhou J, Li H. 3D barcode preprocessing scheme based on image recognition [J]. IEEE Transaction on Signal Processing, 2007,4875:651 - 655. 被引量:1
  • 5Kuo S S, Mammone R J. Image restoration by convex projections using adaptive constrains and the L norm [J]. IEEE Transaction on Signal Processing, 1992,22(1) :159-16. 被引量:1
  • 6Zhu H, Zhou J, Li H. 3D barcode preprocessing scheme based on image recognition [ J ]. IEEE Transaction on Signal Processing, 2007,4875:651 -655. 被引量:1
  • 7Kuo S S, Mammone R J. Image restoration by convex projections using adaptive constrains and the L norm [ J ]. IEEE Transaction on Signal Processing, 1992,22( 1 ). 被引量:1
  • 8Lowe D G. Object Recognition from Local Scale- invariant Features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece, 1999: 1150-1157. 被引量:1
  • 9Lowe D G. Distinctive Image Features from Scale- invariant Keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 10Stephen S, Lowe D G, Little J J. Vision-based Global Localization and Mapping for Mobile Robots [J]. IEEE Transactions on Robotics, 2005, 21(3): 364-375. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部