期刊文献+

一种提高SIFT特征匹配效率的方法 被引量:9

A Method for Improving Matching Efficiency of SIFT Features
下载PDF
导出
摘要 为了提高SIFT特征匹配的效率,首先改造了SIFT特征描述符相似性度量的形式,以街区距离代替欧氏距离作为特征描述符之间的相似性度量,降低了相似性度量公式的时间复杂度;其次,提出了最近邻和次近邻假设算法,即假设待匹配图像中任意2个特征点为最近邻点和次近邻点,通过比较当前特征点与待匹配图像中其他特征点之间的距离,以及当前特征点与假设的最近邻和次近邻之间的距离,实现最近邻和次近邻的替换,最终得到实际的最近邻点和次近邻点。算法减少了相似性计算过程中特征点比较的次数,从而减小了算法的计算量。实验结果表明,提出的算法在保持鲁棒性的同时提高了SIFT特征匹配的效率,能够为一些快速性应用提供保障。 In order to solve this problem,the authors reformed the form of similarity measurement of SIFT feature descriptors by using city-block distance instead of Euclidean distance to decrease the time complexity of the similarity measurement formula.Besides,a hypothesis algorithm about the nearest neighbor and the second-nearest neighbor was proposed,which supposed arbitrary two features in the image to be matched were the nearest neighbor point and the second-nearest neighbor point respectively and these two points can be replaced by comparing the distance of the current feature from other features in the image to be matched and the distance of the current feature from the supposed two features,finally the actual nearest neighbor point and the second-nearest neighbor point were gotten.The algorithm reduces the number of compares of features involved in the process of similarity computation and thereby decreases the amount of the computation of the algorithm.Experiments show that the proposed algorithm improves matching efficiency of SIFT features while keeping robustness unchanged,and which can provide safeguard for those applications with high real-time requirements.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2012年第11期1297-1301,共5页 China Mechanical Engineering
基金 国家科技重大专项(2009ZX04001-065) 陕西省教育厅科学研究计划资助项目(11JK0876)
关键词 SIFT特征 特征匹配 相似性度量 最近邻 次近邻 SIFT(scale invariant feature transform) feature feature matching similarity measurement nearest neighbor second-nearest neighbor
  • 相关文献

参考文献16

二级参考文献88

共引文献249

同被引文献77

  • 1李海,李春来,侯德艳.支持向量机下机器学习模型的分析[J].吉首大学学报(自然科学版),2010,31(3):39-42. 被引量:3
  • 2董傲霜,宋宏亮.基于SIFT特征和颜色融合的图像检索方法[J].吉林大学学报(工学版),2013,43(S1):440-444. 被引量:4
  • 3阳方林,杨风暴,韦全芳,韩焱.一种新的快速图像匹配算法[J].计算机工程与应用,2005,41(5):51-52. 被引量:13
  • 4章毓晋.图像处理和分析[M].北京:清华大学出版社,1999.. 被引量:345
  • 5LOWE D G.Distinctive Image Features from Scale-Invariant Key-Points[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 6Mikolajczyk K,Tuytelaars T,Schmid C,et al.A comparis onof affine region detectors[J].International Journal of Com-puter Vision,2005,65( 1/2):43-72. 被引量:1
  • 7Mikolajczyk K,Schmid C.A performance evaluation of localdescriptors[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2005,27(10):1615-1630. 被引量:1
  • 8Nunez P,Vazquez-Martin R,Bandera A.Visual odometrybased on structural matching of local invariant features usingstereo camera sensor[J].Sensors,2011(11):7262-7284. 被引量:1
  • 9Lowe D G.Distinctive image features from local scale-invari-ant features[J].International Conference on Computer Vi-sion,1999(9):1150-1157. 被引量:1
  • 10Lowe D G.Distinctive image features from scale-invariantkeypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部