期刊文献+

3维物体SIFT特征的提取与应用 被引量:22

Extraction and Application of 3D Object SIFT Feature
下载PDF
导出
摘要 SIFT(scale-invariant feature transform)算法自提出以来,就因其优越的性能(尺度不变性、旋转不变性、抗噪声能力强、受光照变化影响小等),而备受图像图形领域研究者的青睐。该算法的核心特征(SIFT特征)基于局部梯度,能够抵抗图像大幅度的伸缩、旋转等,很好地满足了3维物体识别的实际需要。而SIFT特征对投影变换的相对敏感性恰可用于3维模型的视点空间划分,且划分依据与匹配依据一致,能够有效提高匹配准确度。合理设置SIFT算法的阈值还可以有效处理物体背景分割等技术问题。通过充分的预处理,能够有效降低SIFT算法计算复杂度高,使得系统基本达到实时匹配。总之,将SIFT特征应用在3维物体识别系统中的视点空间划分、背景物体分割、模式特征匹配等模块,可以有效地提高系统的识别速度与效率,增强系统的稳定性。 The SIFT algorithm is widely adopted by researchers in image and graphic study, with its many advantages such as invarianee to scaling, rotation, noise and illumination changes. SIFT feature is based on local gradient, making it invulnerable to large scale of image extension, compression and rotation, and this meets the practical requirements of 3D object recognition. And the sensitivity to homographic transformation of the feature can be applied to partition the view space. Reasonably setting the threshold value, SIFT algorithm can handle the technical problems such as cutting the object from its background. After pre-processing, the high computation complexity can be reduced, making the system run in real time. Therefore, applying SIFT feature in view space partition, cutting the object from its background and pattern matching can effectively enhance the robustness of the system and improve its speed and efficiency.
作者 熊英 马惠敏
出处 《中国图象图形学报》 CSCD 北大核心 2010年第5期814-819,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60502013) 国家高技术研究发展计划(863)项目(2006AA01Z115)
关键词 SIFT 3维物体识别模式匹配视点空间划分 SIFT, 3D object recognition, pattern match, view space partition
  • 相关文献

参考文献8

  • 1李庆,周曼丽,柳健.三维物体识别研究进展[J].中国图象图形学报(A辑),2000,5(12):985-993. 被引量:29
  • 2吕静,苏显渝,王海霞.旋转不变的三维物体识别[J].光电子.激光,2004,15(12):1492-1497. 被引量:5
  • 3孙洁,李风亭.基于仿射不变性的三维目标识别研究[M].北京:清华大学,2008. 被引量:1
  • 4孙毅刚,杨立勇,孙承琦.仿射坐标系下多视点的三维物体识别方法研究[J].中国民航学院学报,2005,23(6):53-55. 被引量:1
  • 5Lewe D G.Object recognition from local scale-invariant features(C]//Proceedings of International Conference on Computer Vision.Washington,DC,USA:IEEE Computer Society.1999:1150-1157. 被引量:1
  • 6Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-11O. 被引量:1
  • 7Silvio Savarese,Li F F.3D generic object categorization,localization and pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision.New York,NY,USA:IEEE Press,2007:1-8. 被引量:1
  • 8Princeton.Princeton is a standard 3D model library[EB/OL].(2007-10-05)[2009-04-17].http://shape.cs.princeton.edu/search.html. 被引量:1

二级参考文献59

  • 1孙向军,曹立鑫,刘凤玉.基于角仿射不变的特征匹配[J].中国图象图形学报(A辑),2004,9(5):589-593. 被引量:5
  • 2张奇峰,张立明.一种新的统计仿射不变量[J].计算机工程与科学,2004,26(9):35-38. 被引量:2
  • 3马利庄 王荣良.计算机辅助几何造型技术及其应用[M].北京:科学出版社,1997.. 被引量:2
  • 4Sujit kntlirummal,Jawahar C V,Narayanan P J. Planar shape recognition across multiple views[A]. In:16th Internationdl Conference on Pattern Recognition[C]. Québec:2002.10 456-10 459. 被引量:1
  • 5Plantinga W H, Dyer C R. Visibility, occlusion, and the aspect graph, IJCV, 1990,5:137-160. 被引量:1
  • 6Huttenloeber D P, Ullman Sb. Recognizing solid objects by alignment with an image. IJCV, 1990,5(2):195-212. 被引量:1
  • 7Nagao K, Grimson W E L. Object reeognition by alignment asing invaziant proiections of planar surfaces, MIT: AI Lab Tech. Report, 1994. 被引量:1
  • 8Jurie F. Robust hypothesis verification: application to modelbased obiect recognition. PR, 1999, 32:1069-1081. 被引量:1
  • 9Gandhi T, Camps O. Robust feature selection for object recogntition using uncertain 2d image data. In:IEEE Conference on Computer Vision and Pattern Recognition Seattle Washington, 1994:281-287. 被引量:1
  • 10Yi J H, Chelberg D M. Model based 3D ohject recognition using bayesian undexing. CVIU, 1998,69(1):87-105. 被引量:1

共引文献32

同被引文献183

引证文献22

二级引证文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部