期刊文献+

SIFT算法距离比阈值自适应改进研究 被引量:5

Improvement on adaptive distance ratio threshold of scale invariant feature transform algorithm
下载PDF
导出
摘要 对SIFT算法中距离比阈值参数进行分析,提出自适应距离比阈值改进方法,并提出用随机取样一致性算法优化点与匹配点的比值作为判断最佳阈值的标准。结果表明,改进后的方法能够通过较少的迭代确定最佳阈值,并且不会给计算带来很多负担,同时能够提高匹配点的准确性。 The distance ratio threshold is used for matching in scale invariant feature transform algorithm, which presently is a fixed value in many researches and weakens the algorithm's robustness. The distance ratio threshold was analyzed in detail, and an adaptive method was put forward. In addition, the ratio of random sample consensus optimized points and matching points was used as an approximation of repeatability to identifying the optimum value. The experimental results show that this method can find the optimum threshold value through few iterations, which can improve the matching accuracy while not bring too much calculation.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期71-75,82,共6页 Journal of China University of Petroleum(Edition of Natural Science)
基金 教育部自主创新科研计划项目(10CX05007A 12CX04002A) 国家自然科学基金项目(41101355)
关键词 测绘 尺度不变特征变换(SIFT) 距离比阈值 自适应 重复率 mapping scale invariant feature transform(SIFT) distance ratio threshold adaptivity repeatability
  • 相关文献

参考文献9

  • 1LOWE D G.Object recognition from local scale-invariant features [C/OL]//Proceedings of the Seventh IEEE International Conference on Computer Vision(Volume I),Kerkyra,Greece,Sept 20-27,1999:1150-1157.[2012-11-02] http://ieeexplore.ieee.org/xpls/abs_ all.jsp? ar-number = 79041 O&tag = I. 被引量:1
  • 2LOWE D G.Distinctive image features from scale-invariant keypoints [J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 3MIKOLAJCZYK K,SCHIMID C.A performance evaluation of local descriptors [C/OL].//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(Volume 2),June 18-20,2003:257-263.[2012-11-05] http://ieeexplore.ieee.org/xpls/ abs_all.jsp? amumber = 1211478. 被引量:1
  • 4MIKOLAJCZYK K,SCHIMID C.A Performance evaluation of local descriptors [J/OL].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.[2012-11-05] http://ieeexplore.ieee.org/xpls/abs_ all.jsp? amumber = 1498756&tag= I. 被引量:1
  • 5YAN K,SUKTHANKAR R.PCA-SIFT:a more distinctive representation for local image descriptors[C/OL].// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(Volume 2),June 27-July 2,2004:506-513.[2012-11-06] http://ieeexplore.ieee.org/xpls/abs_ all.jsp? amumber = 1315206. 被引量:1
  • 6BAY H,ESS A,TUYTELAARSs T,et al.Speeded-up robust features(SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-359. 被引量:1
  • 7MOREL J M,YU G S.ASIFT:a new framework for fully affine invariant image comparison [J].Society for Industrial and Applied Mathematics Journal on Image Sciences,2009,2(2):438469. 被引量:1
  • 8李芳芳,肖本林,贾永红,毛星亮.SIFT算法优化及其用于遥感影像自动配准[J].武汉大学学报(信息科学版),2009,34(10):1245-1249. 被引量:61
  • 9SCHMID C,MOHR R,BAUCKHAGE C.Evaluation of interest point detectors [J].International Journal of Computer Vision,2000,37(2):151-172. 被引量:1

二级参考文献8

  • 1张祖勋 张剑清.数字摄影测量[M].武汉:武汉测绘科技大学出版社,1997.180-190. 被引量:19
  • 2Lowe D G. Distinctive Image Features from Scaleinvariant Keypoints [J]. International Journal of Computer Vision, 2004, 60(2):91-110. 被引量:1
  • 3Brown M, Lowe D G. Recognizing Panoramas [C]. The 9th International Conference on Computer Vision (ICCV03), Nice, 2003. 被引量:1
  • 4Schafalitzky F, Zisserm an A. Multi-view Matching for Unordered Image Sets, or How Do I Organize My Holiday Snaps[C]. The 7th European Conference on Computer Vision (ECCV02), Berlin, 2002. 被引量:1
  • 5Lowe D G. Object Recognition from Local Scale-Invariant Features [C]. International Conference on Computer Vision, Corfu, Greece, 1999. 被引量:1
  • 6Lowe D G. Distinctive Image Features from Scaleinvariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2) : 91-110. 被引量:1
  • 7Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2005, 27(10):1 615-1 630. 被引量:1
  • 8Fischler M, Bolles R. Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography [J]. ACM, Graphics and Image Processing, 1981, 24 (6) :381-395. 被引量:1

共引文献60

同被引文献33

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部