期刊文献+

基于马尔可夫随机场的植被环境中的障碍物识别 被引量:4

Obstacle Recognition in Vegetation Environment Based on Markov Random Field
原文传递
导出
摘要 为了识别植被场景中的叶片和相邻障碍物,提出了一种三维激光雷达的目标检测算法。以雷达点云中的相邻点构建邻域特征,提取新的特征参数作为判别依据,采用期望最大算法求得混合高斯模型以表征特征参数的分布情况;最后,利用马尔可夫随机场建立先验模型,在最大后验概率框架下采用图割法进行求解,得到最优目标函数。该算法已成功应用于无人驾驶平台。研究结果表明,该算法能有效地识别叶片及其邻接障碍物,可以清楚地分辨障碍物边界。与传统算法相比,该算法具有更高的稳健性和准确率,且其实时性满足实际应用的需求。 In order to identify foliage and the adjacent obstacles in the vegetation scenes,an object detection algorithm of three-dimensional laser radar is proposed.The neighborhood characteristics of neighboring points are constructed in point cloud,and new characteristic parameters are extracted as determining criterion.Then the Gaussian mixture model is obtained by using the maximum expectation algorithm to characterize the distribution of the parameters.Finally,the priori model is established by using Markov random field.The optimal objective function is obtained by the graph-cut method under the maximum posteriori probability framework.This algorithm has been successfully applied to the unmanned platform.The experimental results show that the algorithm can effectively identify foliage and their adjacent obstacles,and the boundaries of obstacles can be detected clearly.Compared with traditional algorithms,the proposed algorithm is more robust and accurate,and its response time meets the demand of practical applications.
作者 程子阳 任国全 张银 Cheng Ziyang;Ren Guoquan;Zhang Yin(Department of Vehicle and Electrical Engineering,Army Engineering University,Shijiazhuang,Hebei 050003,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第3期153-162,共10页 Laser & Optoelectronics Progress
基金 国防预研基金(9140A09031715JB34001)
关键词 图像处理 三维激光雷达 目标检测 邻域特征 马尔可夫随机场 混合高斯模型 图割法 image processing three-dimensional laser radar object detection neighborhood characteristic Markov random field Gaussian mixture model graph-cut method
  • 相关文献

参考文献7

二级参考文献177

  • 1Macedo J, Matthies L, Manduchi R. Ladar-based Discrimination of Grass from Obstacles for Autonomous Navigation[J]. Lecture Notes in Control and Information Sciences, London, UK.. Springer-Verlag, 2000, 271:111-120. 被引量:1
  • 2Castano A, Talukder A, Matthies L. Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation [J]. Autonomous Robots(S0929-5593), 2005, 18: 81-102. 被引量:1
  • 3Lacaze A, Murphy K, DelGiorno M. Autonomous mobility for the Demo III experimental unmanned vehicles [C]// Assoc. for Unmanned Vehicle Systems.Int. Conf. on Unmanned Vehicles (AUVSI 02), Gaithersburg, MD, USA, Sept 14-17, 2002: 640-643. 被引量:1
  • 4Hebert M, Vandapel N. Terrain classification techniques from ladar data for autonomous navigation [C]//Collaborative Technology Allianees Conference, College Park, MD, USA, May, 2003: 44-51. 被引量:1
  • 5Bellutta P. Terrain Perception for Demo III [C]//Proceedings of the IEEE Intelligent Vehicles Symposium 2000, Dearbom, MI, 2000: 326-331. 被引量:1
  • 6Bradley D, Thayer S, Stentz A T, et al. Vegetation detection for mobile robot navigation [C]//Roboties Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep, February, 2004: CMU-RI-TR-04-12. 被引量:1
  • 7Jensen J R. Remote Sensing of the Environment [M]. Prentice-Hall, 2000:112-114. 被引量:1
  • 8Bilmes J. A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models [R]. University of Berkeley, Tech. Rep, 1997: ICSI-TR-97-021. 被引量:1
  • 9Comaniciu D, Meer E Mean-Shift: A Robust Approach toward Feature Space Analysis [J]. IEEE Transactions on pattern Analysis and Machine Intelfigence (PAMI)(S0162-8828), 2002, 24(5): 603-619. 被引量:1
  • 10Li S Z. Markov Random Field Modeling in Image Analysis. London: Springer, 2009. 被引量:1

共引文献57

同被引文献32

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部