期刊文献+

基于改进遗传算法的深度图像获取技术 被引量:9

Depth Image Acquisition Technology Based on Improved Genetic Algorithm
原文传递
导出
摘要 在三维立体成像技术研究中,图像深度提取不受光源照射方向及物体表面发射特性的影响,不存在阴影,因此可以更准确地表现物体目标表面的三维深度信息。为了获取精确的深度图像,提出一种深度获取方法,采用基于改进的遗传算法的最佳熵阈值图像分割法对图像进行分割处理,进而得到深度图像。此方法可明显提高所得到的深度图像的准确度和有效性。同时,改进遗传算法可以快速逼近最佳阈值,大大缩短最佳阈值图像分割过程中阈值的选取时间,提高分割效率和深度获取的准确性。 In the research of three-dimensional imaging technology, the extraction of image depth is not affected by the illumination direction of the light source and the launch characteristics of the object surface, meanwhile with no shadow, and it can accurately show the three-dimensional depth information of the object surface. We propose a depth acquisition method to obtain the high-quality depth images, using the optimal entropy threshold image segmentation method based on improved genetic algorithm to segment the image and then obtain the depth image. This method can obviously improve the accuracy and real validity of the obtained depth image. The improved genetic algorithm can quickly approximate the optimal threshold, greatly shorten the threshold time of the optimal threshold image segmentation, and improve the accuracy of segmentation efficiency and depth acquisition.
作者 王琦 朴燕 Wang Qi;Piao Yan(College of Electronic and Information Engineering, Changchun University of Science and Technology Changchun, Jilin 130022, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第2期170-176,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(60977011)
关键词 图像处理 三维立体成像 深度获取 阈值分割 遗传算法 image processing three-dimensional imaging depth acquisition entropy threshold segmentation genetic algorithm
  • 相关文献

参考文献12

二级参考文献88

  • 1林德静,孙晓东.三维扫描人体的点云数据精简技术[J].计算机应用,2006,26(B06):59-60. 被引量:3
  • 2邱鸿钟.大学生心理卫生[M].广州:广东高等教育出版社,1997.198-201. 被引量:6
  • 3Fehn C.A 3D-TV Approach Using Depth-image-based Rendering[C] //Proc.of IEEE Int'l Conf.on Visualization,Imaging,and Image Processing.Benalmadena,Spain:[s.n.] ,2003. 被引量:1
  • 4Sharstein D.Szeliski R.A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms[C] //Proc.of IEEE Workshop on Stereo and Multi-baseline Vision.[S.l.] :IEEE Press,2001. 被引量:1
  • 5Cox I J,Hingorani S L.A Maximum Likelihood Stereo Algorithm[J].Computer Vision and Image Understanding,1996,63(3):542-567. 被引量:1
  • 6Comaniciu D,Meer P.Mean-shift:A Robust Approach Toward Feature Space Analysis[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2002,24(5):603-619. 被引量:1
  • 7Klaus A.Segment-based Stereo Matching Using Belief Propagation and a Self-adapting Dissimilarity Measure[C] //Proc.of International Conference on PaRer Recognition.[S.l.] :IEEE Press,2006. 被引量:1
  • 8Forstmann S,Kanou Y,Ohya J,et al.Real-time Stereo by Using Dynamic Programming[C] //Proc.of IEEE Int'l Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:[s.n.] ,2004. 被引量:1
  • 9黄希庭.当代大学生心理特点与教育[M].上海:教育出版社,2001,4.. 被引量:2
  • 10樊富明.大学生心理健康教育研究[M].北京:清华大学出版社,2002,11.. 被引量:2

共引文献149

同被引文献89

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部