期刊文献+

基于激光雷达的铁路接触网支柱识别技术 被引量:4

Identification Technology of Railway Catenary Mast Based on Lidar
下载PDF
导出
摘要 为避免养路机械在施工过程中碰到接触网支柱而造成安全事故,开发了一套能够实现智能化辅助避障的接触网支柱识别与定位系统。该系统采用能在夜间和恶劣天气条件下工作的三维激光雷达获取视场点云数据,采取欧氏聚类和特征匹配相结合的障碍物识别算法,采用窗口滤波得出接触网支柱准确的位置信息。现场试验结果表明,该系统可以实时准确地识别并定位接触网支柱,定位精度满足现场应用要求。 In order to avoid the safety accidents caused by the catenary mast encountered by the track maintenance machinery in the construction process,a set of catenary mast identification and positioning system which can realize intelligent auxiliary obstacle avoidance was developed.The system used the three-dimensional lidar which can work at night and in bad weather conditions to obtain the field point cloud data,adopted the obstacle recognition algorithm combining Euclidean clustering and feature matching,and used window filtering to obtain the accurate position information of catenary mast.The field test results show that the system can accurately identify and locate the catenary mast in real time,and the positioning accuracy could meet the requirements of field application.
作者 刘尚昆 朱广平 王波 高春雷 徐济松 LIU Shangkun;ZHU Guangping;WANG Bo;GAO Chunlei;XU Jisong(Railway Engineering Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;China Railway Xi’an Group Co.Ltd.,Xi’an 712400,China;CRCC High-tech Equipment Corporation Limited,Kunming 650215,China)
出处 《铁道建筑》 北大核心 2021年第10期133-135,共3页 Railway Engineering
基金 中国铁道科学研究院集团有限公司基金(2019YJ049)。
关键词 养路机械 避障系统 激光雷达 坐标转换 欧氏聚类 支柱识别 track maintenance machinery obstacle avoidance system lidar coordinate transformation Euclidean clustering mast identification
  • 相关文献

参考文献5

二级参考文献68

  • 1周智,蔡自兴,余伶俐.基于直线特征提取的自主车辆可通行区域检测[J].华中科技大学学报(自然科学版),2011,39(S2):188-191. 被引量:4
  • 2高春雷,王发灯.清筛机污土输送装置避障系统的设计[J].铁道建筑,2007,47(8):97-99. 被引量:8
  • 3HADSELL R, SERMANET P, ERKAN A N, et al. Online learning for offroad robots: using spatial label propagation to learn long-range traversability[ C ]//Proc of Robotics : Science and Systems. 2007. 被引量:1
  • 4HALATCI I, BROOKS C A, IAGNEMMA K. Terrain classification and classifier fusion for planetary exploration rovers [ C ]//Proc of IEEE Aerospace Conference. 2007 : 1-11. 被引量:1
  • 5ODEDRA S. Using unmanned ground vehicle performance measurements as a unique method of terrain classification [ C ]//Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011 : 286-291. 被引量:1
  • 6VERNAZA P, TASKAR B, LEE D D. Online, self-supervised terrain classification via discriminatively trained submodular Markov ran-dom fields[ C]//Proc of IEEE International Conference on Robotics and Automation. 2008 : 2750-2757. 被引量:1
  • 7VARMA M, ZISSERMAN A. Texture classification: are filter banks necessary? [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003 : 691-698. 被引量:1
  • 8SOUNDRAPANDIAN K K, MATHUR P. Traversability assessment of terrain for autonomous robot navigation [ C ]//Proc of International Multiconference of Engineers and Computer Science. 2010: 1286-1289. 被引量:1
  • 9KHAN Y N, KOMMA P, BOHLMANN K, et al. Grid-based visual terrain classification for outdoor robots using local features [ C ]//Proc of IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems. 2011 : 16-22. 被引量:1
  • 10OJALA T, PIETIKAINEN M, MAENPAA T. Muhiresolution grayscale and rotation invariant texture classification with local binary patterns[J]. IEEE Zrans on Pattern Analysis and Machine InteUigence,2002,24(7) : 971-987. 被引量:1

共引文献38

同被引文献40

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部