期刊文献+

数据挖掘技术在船舶到达规律分析中的应用研究 被引量:2

Application of data mining technology in the analysis of the law of ship arrival
下载PDF
导出
摘要 数据挖掘是指通过对数据进行特定分析,揭示数据内部蕴藏的联系和规律,以供后续应用。数据挖掘技术的应用早已引起信息产业界的广泛关注。在快速增长的数据量和匮乏的信息量之间矛盾的作用下,数据挖掘技术随着涉及学科的发展而不断进化。海上交通特征分析的基本目的是通过特定算法对收集到的海上数据进行充分分析,以便从微观和宏观上掌握海上船舶的运行情况、特征及规律,为港口规划和管理做充分理论依托。本文基于对AIS数据的研究,通过数据挖掘技术分析厦门港航道的交通状况。 Data mining refers to the analysis of the data through specific analysis,revealing the internal relations and rules of the data for the subsequent application. The application of data mining technology has already caused wide attention in the information industry. Under the contradiction between the rapid growth of data quantity and the lack of information,the data mining technology is evolving with the development of the subject. The basic objective of marine traffic characteristics analysis is to grasp ship operation,the characteristic and the rule from the micro and macro through fully analyzing the collected marine data through a specific algorithm, and do sufficient theoretical basis for port planning and management. Based on the research of AIS data,this paper analyzes the traffic situation of Xiamen port through the data mining technology.
作者 周戈
出处 《舰船科学技术》 北大核心 2016年第8X期88-90,共3页 Ship Science and Technology
关键词 海上交通 船舶时间距 交通量 AIS maritime traffic ship time distance traffic AIS
  • 相关文献

参考文献6

二级参考文献41

  • 1廖鹏,张玮.施桥船闸日到船概率分布初探[J].水利水运工程学报,2004(3):70-74. 被引量:4
  • 2许宏科,揣锦华,张华,樊海玮.公路隧道交通流的数据挖掘[J].长安大学学报(自然科学版),2005,25(4):66-69. 被引量:11
  • 3王春燕.基于盲数回归法的港口吞吐量预测[J].交通标准化,2006,34(9):167-169. 被引量:3
  • 4Wang, D. H. , Yang, Z. S. , Zhang, H. Cluster Analysis Used in Dealing with Traffic Flow Information [C]//Vehicle Electronics Conference (IVEC ' 99) Proceedings of the IEEE International, 1999: 114-116. 被引量:1
  • 5Wu-Hsien Hsu, Ju-An Jao, Yen-Liang Chen. Discovering Conjecturable Rules Through Tree-based Cluste- ring Analysis[J]. Expert Systems with Applications, 2005,(29) : 493-505. 被引量:1
  • 6Anil W. Jain, Alexander Topchy, Martin H.C. Law, etc. Landscape of Clustering Algorithms [C]//Proc. IAPR International Conference on Pattern Recognition, 2004. 被引量:1
  • 7David J. Hand, WojteW J. WrzanowsWi. Optimising K-Means Clustering Results with Standard Software PacWages [J]. Computational Statistics & Data Analysis, 2005(49): 969-973. 被引量:1
  • 8Hermes Senger, Eduardo R. Hruschka, Fabricio A. B. Silva, Liria M. Sato, Calebe P. Bianehini, Bruno F. Jerosch. Exploiting idle cycles to execute data mining applications on clusters of PCs[J/OL]. The Journal of Systems and Software, (2006-10-30) [2007-03- 01]. http://www, ekevier, com/locate/jss 被引量:1
  • 9钱瑾,王培红,李琳.聚类算法在锅炉运行参数基准值分析中的应用[J].中国电机工程学报,2007,27(23):71-74. 被引量:30
  • 10齐传新.内河船舶交通运输安全学[M].大连:大连海运学院出版社,1990. 被引量:1

共引文献55

同被引文献10

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部