期刊文献+

范例推理中范例自动获取的数据挖掘技术 被引量:6

Automatic Case Acquisition in Case-Based System Using Data Mining
下载PDF
导出
摘要 范例推理作为基于规则推理技术的一个重要补充,已受到人工智能研究人员的普遍关注.在范例推理中,也有许多相应的知识,它主要包括:范例库、修正知识库、索引模式、相似性判断标准等.这些知识的获取也存在一定的瓶颈问题.通过在范例推理中引入数据挖掘技术,可望部分解决其知识获取的自动化问题,提高智能系统的整体性能.本文着重讨论了在范例推理中使用数据挖掘技术的必要性,提出了二个自动获取范例库的思想与算法,并应用于一个实际的系统之中.实验结果表明,这种思路大大提高了智能系统的开发周期与系统的运行效率. As an important supplementary technique to rule based reasoning,case based reasoning, has been emphasized by researchers in the artificial intelligence field. In a case based system, there are many kinds of knowledge, such as case base ,adaptation knowledge base ,indexing model, similarity assessing criteria, etc. There exists also a bottleneck in these knowledge acquisitions. The use of data mining may automat the acquisition of the knowledge and heighten the whole competence of the intelligent system. This paper discusses emphatically data mining techniques which could be used in CBR, and puts forward two algorithms of case base acquisition from historical data base automatically. The experimental result shows that this idea speeds up the implementation cycle of CBR intelligent system and strengthens the running efficiency of the system.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2003年第1期23-27,共5页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(60075015) 安徽省教育厅自然科学基金资助项目(2001kj002)
关键词 范例自动获取 范例推理 数据挖掘 范例库 数据库 规则推理 人工智能 case based reasoning data mining case base data base
  • 相关文献

参考文献15

  • 1[1]Yahia M E. Rough neural expert systems[J], Expert Systems with Applications,2000,18: 87 - 99 被引量:1
  • 2[2]Mejia-Lavalle M, Rodriguez-Ortiz G. Obtaining expert system rules using data mining tools from a power generation database [J]. Expert Systems with Applications, 1998,14:37 -42 被引量:1
  • 3[3]Hiroshi Tsukimoto. Extracting rules from neural networks[J] , IEEE Transactions on Neural Networks ,2000, 11 ( 2 ):377 -389 被引量:1
  • 4[4]Jagielska I, Matthews C,Whiffort T. An investigation into the application of neural networks, fuzzy logic, genetic algorithms , and rough sets to automated knowledge acquisition for classification problems [J]. Neurocomputing, 1999,24:37 - 54. 被引量:1
  • 5[5]Kraslawski A, Pedrycz W, Nystrom L. Fuzzy neural network as instance generator for case-based reasoning system [J] ,Neural Computing and Applications , 1999,8:106 - 113. 被引量:1
  • 6[6]Mario Lenz . Case-Based Reasoning :from Foundations to Applications [M]. Berlin, Springer, 1998 . 被引量:1
  • 7[7]David Leake. Learning to integrate multiple knowledge sources for case-based reasoning [A]. Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence [C]. Nagoya, Japan: 1997. 246 - 251. 被引量:1
  • 8[8]Hanney K, Keane M. Learning adaptation rules from a case base[A]. Proceedings of the Third European Workshop on Case-Based Reasoning[C]. Lausanne :1996. 178 - 192. 被引量:1
  • 9[9]Skalak D. Prototype and features selection by sampling and random mutation hill-climbing algorithm [A]. Proceedings 11 th Int Conf Machine Learning [C]. New Brunswiek, Mor-gan , 1994. 293 - 301. 被引量:1
  • 10[10]Azuaje F. Discovering relevance knowledge in data: a growing cell structure approach [J]. IEEE Transactions on Systems, Man , and Cybernetics, 2000,30 (3) :448 - 460. 被引量:1

同被引文献42

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部