期刊文献+

基于XML可重构的数据挖掘系统研究 被引量:2

The Research of Reconfigurable Data Mining System Based on XML
下载PDF
导出
摘要 为了提高数据挖掘的速度和精度,提出了可重构的数据挖掘系统框架设计方案。利用XML技术特性,通过配置把数据挖掘需要的各种信息存入到知识库,挖掘时利用这些XML脚本实现了业务逻辑可配置,系统功能可重组特性,系统既具有专用性,又具有通用性,避免了系统的重复设计。 A design of reconfigurable data mining systematic framework is propesed to improve speed and precision. According to the features of XML, store the demand information of data mining to repository by configuration in order to data mining. It realizes coniigurable logical operation and recombination systemic function. It has customization and general format. It can be used to avoid repeated design of system.
出处 《微电子学与计算机》 CSCD 北大核心 2006年第6期103-105,108,共4页 Microelectronics & Computer
关键词 XML 数据挖掘 时间序列 小波分析 XML, Data mining, Time series, Wavelet analysis
  • 相关文献

参考文献6

二级参考文献35

  • 1[1]Carter, C.L., Hamilton, H.J. Efficient attribute-oriented algorithms for knowledge discovery from large databases. IEEE Transactions on Knowledge and Data Engineering, 1998,10(2):193~208. 被引量:1
  • 2[2]Kukich, K. Techniques for automatically correcting words in text. ACM Computing Surveys, 1992,24(4):377~439. 被引量:1
  • 3[3]Tian, Zeng-ping, Lu, Hong-jun, Ji, Wen-yun, et al. An n-gram-based pproach for detecting approximately duplicate database records. International Journal on Igital Library, 2001,5(3):325~331. 被引量:1
  • 4[4]Agrawal, R., Srikant, R. Fast algorithms for mining association rules in large databases. In: Proceedings of the VLDB. 1994. 487~499. 被引量:1
  • 5[5]Yu, Fang, Jin, Wen. An effective approach to mining exeption class association rules. In: Proceedings of the Web-Age Information Management 2000. 2000. 145~150. 被引量:1
  • 6[6]Agrawal, R., Srikant, R. Mining sequential patterns. In: Proceedings of the ICDE. 1995. 3~14. 被引量:1
  • 7[7]Agrawal, R., Ghosh, S., Imielinski, T., et al. An interval classifier for database mining applications. In: Proceedings of the VLDB. 1992. 560~573. 被引量:1
  • 8[8]Zhou, Ao-ying, Qian, Wei-ning, Qian, Hai-lei, et al. A hybrid approach to clustering in very large databases. In: Proceedings of the 5th PAKDD. 2001. 519~524. 被引量:1
  • 9[9]Ester, M., Kriegel, H.P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the KDD. 1996. 226~231. 被引量:1
  • 10[10]Zhou, Ao-ying, Zhou, Shui-geng, Cao, Jing, et al. Approaches for scaling DBSCAN algorithm to large spatial databases. Journal of Computer Science and Technology, 2000,15(6):509~527. 被引量:1

共引文献41

同被引文献12

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部