期刊文献+

非现场审计的实现方法研究 被引量:17

Study on the Realization Method of Off-site Audit
下载PDF
导出
摘要 针对目前的现状.分析了非现场审计在审计应用中的重要性,提出了一种实现非现场审计的方法。并对该方法中的数据采集和数据处理技术进行了深入的研究。最后,给出了实施非现场审计的建议。本文的研究为开展非现场审计提供了理论依据。 At present, the importance of off-site audit in audit analysis is analyzed, and an off-site audit method is proposed. Then, data acquisition and data processing technology in off-site audit is studied. Finally, the implement advice of off-site audit is given by an example. Thus, the theory foundation of implementing off-site audit is explored.
作者 王会金 陈伟
机构地区 南京审计学院
出处 《审计与经济研究》 北大核心 2005年第3期36-39,共4页 Journal of Audit & Economics
基金 江苏省电力公司"非现场审计"课题
关键词 非现场审计 数据采集 数据处理 实现方法 监督机制 人员培训 off-site audit data acquisition data processing
  • 相关文献

参考文献5

二级参考文献21

  • 1[1]Carter, C.L., Hamilton, H.J. Efficient attribute-oriented algorithms for knowledge discovery from large databases. IEEE Transactions on Knowledge and Data Engineering, 1998,10(2):193~208. 被引量:1
  • 2[2]Kukich, K. Techniques for automatically correcting words in text. ACM Computing Surveys, 1992,24(4):377~439. 被引量:1
  • 3[3]Tian, Zeng-ping, Lu, Hong-jun, Ji, Wen-yun, et al. An n-gram-based pproach for detecting approximately duplicate database records. International Journal on Igital Library, 2001,5(3):325~331. 被引量:1
  • 4[4]Agrawal, R., Srikant, R. Fast algorithms for mining association rules in large databases. In: Proceedings of the VLDB. 1994. 487~499. 被引量:1
  • 5[5]Yu, Fang, Jin, Wen. An effective approach to mining exeption class association rules. In: Proceedings of the Web-Age Information Management 2000. 2000. 145~150. 被引量:1
  • 6[6]Agrawal, R., Srikant, R. Mining sequential patterns. In: Proceedings of the ICDE. 1995. 3~14. 被引量:1
  • 7[7]Agrawal, R., Ghosh, S., Imielinski, T., et al. An interval classifier for database mining applications. In: Proceedings of the VLDB. 1992. 560~573. 被引量:1
  • 8[8]Zhou, Ao-ying, Qian, Wei-ning, Qian, Hai-lei, et al. A hybrid approach to clustering in very large databases. In: Proceedings of the 5th PAKDD. 2001. 519~524. 被引量:1
  • 9[9]Ester, M., Kriegel, H.P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the KDD. 1996. 226~231. 被引量:1
  • 10[10]Zhou, Ao-ying, Zhou, Shui-geng, Cao, Jing, et al. Approaches for scaling DBSCAN algorithm to large spatial databases. Journal of Computer Science and Technology, 2000,15(6):509~527. 被引量:1

共引文献37

同被引文献81

引证文献17

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部